The probability of object–scene co-occurrence influences object identification processes

Abstract

Contextual information allows the human brain to make predictions about the identity of objects that might be seen and irregularities between an object and its background slow down perception and identification processes. Bar and colleagues modeled the mechanisms underlying this beneficial effect suggesting that the brain stocks information about the statistical regularities of object and scene co-occurrence. Their model suggests that these recurring regularities could be conceptualized along a continuum in which the probability of seeing an object within a given scene can be high (probable condition), moderate (improbable condition) or null (impossible condition). In the present experiment, we propose to disentangle the electrophysiological correlates of these context effects by directly comparing object–scene pairs found along this continuum. We recorded the event-related potentials of 30 healthy participants (18–34 years old) and analyzed their brain activity in three time windows associated with context effects. We observed anterior negativities between 250 and 500 ms after object onset for the improbable and impossible conditions (improbable more negative than impossible) compared to the probable condition as well as a parieto-occipital positivity (improbable more positive than impossible). The brain may use different processing pathways to identify objects depending on whether the probability of co-occurrence with the scene is moderate (rely more on top-down effects) or null (rely more on bottom-up influences). The posterior positivity could index error monitoring aimed to ensure that no false information is integrated into mental representations of the world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aminoff E, Gronau N, Bar M (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17:1493–1503. doi:10.1093/cercor/bhl078

    CAS  Article  PubMed  Google Scholar 

  2. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17:379–390. doi:10.1016/j.tics.2013.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  3. Balconi M, Vitaloni S (2014) N400 effect when a semantic anomaly is detected in action representation. a source localization analysis. J Clin Neurophysiol 31:58–64

    Article  Google Scholar 

  4. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629. doi:10.1038/nrn1476

    CAS  Article  PubMed  Google Scholar 

  5. Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38:347–358

    CAS  Article  Google Scholar 

  6. Barenholtz E (2014) Quantifying the role of context in visual object recognition. Vis Cogn 22:30–56. doi:10.1080/13506285.2013.865694

    Article  Google Scholar 

  7. Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14:143–177

    CAS  Article  Google Scholar 

  8. Brodeur MB, Dionne-Dostie E, Montreuil T, Lepage M (2010) The Bank of Standardized Stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS One 5:e10773. doi:10.1371/journal.pone.0010773

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Brodeur MB, Guerard K, Bouras M (2014) Bank of Standardized Stimuli (BOSS) phase II: 930 new normative photos. PLoS One 9:e106953. doi:10.1371/journal.pone.0106953

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Castelhano MS, Henderson JM (2008) The influence of color on the perception of scene gist. J Exp Psychol Hum Percept Perform 34:660–675. doi:10.1037/0096-1523.34.3.660

    Article  PubMed  Google Scholar 

  11. Davenport JL, Potter MC (2004) Scene consistency in object and background perception. Psychol Sci 15:559–564. doi:10.1111/j.0956-7976.2004.00719.x

    Article  PubMed  Google Scholar 

  12. Demiral SB, Malcolm GL, Henderson JM (2012) ERP correlates of spatially incongruent object identification during scene viewing: contextual expectancy versus simultaneous processing. Neuropsychologia 50:1271–1285. doi:10.1016/j.neuropsychologia.2012.02.011

    Article  PubMed  Google Scholar 

  13. Donchin E, Coles MG (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374. doi:10.1017/S0140525X00058027

    Article  Google Scholar 

  14. Dyck M, Brodeur MB (2015) ERP evidence for the influence of scene context on the recognition of ambiguous and unambiguous objects. Neuropsychologia 72:43–51. doi:10.1016/j.neuropsychologia.2015.04.023

    Article  PubMed  Google Scholar 

  15. Federmeier KD, Kutas M (2001) Meaning and modality: influences of context, semantic memory organization, and perceptual predictability on picture processing. J Exp Psychol Learn Mem Cogn 27:202–224

    CAS  Article  Google Scholar 

  16. Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Chapter 1 Top–down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155B:3–21

  17. Ganis G, Kutas M (2003) An electrophysiological study of scene effects on object identification. Brain Res Cogn Brain Res 16:123–144

    Article  Google Scholar 

  18. Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    CAS  Article  Google Scholar 

  19. Hock H, Gordon G, Whitehurst R (1974) Contextual relations: the influence of familiarity, physical plausibility, and belongingness. Percept Psychophys 16:4–8

    Article  Google Scholar 

  20. Holms S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65

    Google Scholar 

  21. Joubert OR, Fize D, Rousselet GA, Fabre-Thorpe M (2008) Early interference of context congruence on object processing in rapid visual categorization of natural scenes. J Vis. doi:10.1167/8.13.11

    Article  PubMed  Google Scholar 

  22. Kolk HH, Chwilla DJ, van Herten M, Oor PJ (2003) Structure and limited capacity in verbal working memory: a study with event-related potentials. Brain Lang 85:1–36

    Article  Google Scholar 

  23. Levelt WJ (1983) Monitoring and self-repair in speech. Cognition 14:41–104

    CAS  Article  Google Scholar 

  24. Mania K, Robinson A, Brandt KR (2005) The effect of memory schemas on object recognition in virtual environments. Presence 14:606–615

    Article  Google Scholar 

  25. McPherson WB, Holcomb PJ (1999) An electrophysiological investigation of semantic priming with pictures of real objects. Psychophysiology 36:53–65

    CAS  Article  Google Scholar 

  26. Mudrik L, Lamy D, Deouell LY (2010) ERP evidence for context congruity effects during simultaneous object-scene processing. Neuropsychologia 48:507–517. doi:10.1016/j.neuropsychologia.2009.10.011

    Article  PubMed  Google Scholar 

  27. Mudrik L, Shalgi S, Lamy D, Deouell LY (2014) Synchronous contextual irregularities affect early scene processing: replication and extension. Neuropsychologia 56:447–458. doi:10.1016/j.neuropsychologia.2014.02.020

    Article  PubMed  Google Scholar 

  28. Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cogn Sci 11:520–527. doi:10.1016/j.tics.2007.09.009

    Article  PubMed  Google Scholar 

  29. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi:10.1016/j.clinph.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sitnikova T, Kuperberg G, Holcomb PJ (2003) Semantic integration in videos of real-world events: an electrophysiological investigation. Psychophysiology 40:160–164

    Article  Google Scholar 

  31. Sitnikova T, Holcomb PJ, Kiyonaga KA, Kuperberg GR (2008) Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. J Cogn Neurosci 20:2037–2057. doi:10.1162/jocn.2008.20143

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun HM, Simon-Dack SL, Gordon RD, Teder WA (2011) Contextual influences on rapid object categorization in natural scenes. Brain Res 1398:40–54. doi:10.1016/j.brainres.2011.04.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Trapp S, Bar M (2015) Prediction, context, and competition in visual recognition. Ann N Y Acad Sci 1339:190–198

    Article  Google Scholar 

  34. Vissers CT, Chwilla DJ, Kolk HH (2006) Monitoring in language perception: the effect of misspellings of words in highly constrained sentences. Brain Res 1106:150–163. doi:10.1016/j.brainres.2006.05.012

    CAS  Article  PubMed  Google Scholar 

  35. Vissers CT, Chwilla DJ, Kolk HH (2007) The interplay of heuristics and parsing routines in sentence comprehension: evidence from ERPs and reaction times. Biol Psychol 75:8–18. doi:10.1016/j.biopsycho.2006.10.004

    Article  PubMed  Google Scholar 

  36. Vissers CT, Kolk HH, van de Meerendonk N, Chwilla DJ (2008) Monitoring in language perception: evidence from ERPs in a picture-sentence matching task. Neuropsychologia 46:967–982. doi:10.1016/j.neuropsychologia.2007.11.027

    Article  PubMed  Google Scholar 

  37. Vo ML, Henderson JM (2009) Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. J Vis 9(24):21. doi:10.1167/9.3.24

    Article  Google Scholar 

  38. Vo ML, Wolfe JM (2013) Differential electrophysiological signatures of semantic and syntactic scene processing. Psychol Sci 24:1816–1823. doi:10.1177/0956797613476955

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all participants. We are also grateful to Dr. Boutheina Jemel for her help on visual analyses. This study was funded by the Natural Sciences and Engineering Research Council of Canada #388752-2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu B. Brodeur.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3634 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sauvé, G., Harmand, M., Vanni, L. et al. The probability of object–scene co-occurrence influences object identification processes. Exp Brain Res 235, 2167–2179 (2017). https://doi.org/10.1007/s00221-017-4955-y

Download citation

Keywords

  • Object
  • Scene
  • Context
  • Probability
  • Event-related potentials