Age-specific neural strategies to maintain motor performance after an acute social stress bout

Abstract

Stress due to cognitive demands and fatigue have shown to impair motor performance in older adults; however, the effect of social stress and its influence on prefrontal cortex (PFC) functioning in older adults during upper extremity motor performance tasks is not known. The present study explored the after-effects of an acute social stress bout on neural strategies, measured using PFC and hand/arm muscle activation, and adopted by younger and older adults to maintain handgrip force control. Nine older [74.1 (6.5) years; three men, six women] and ten younger [24.2 (5.0) years, four men, six women] adults performed handgrip force control trials at 30% maximum voluntary contractions before and after the Trier Social Stress Test (TSST). PFC activity was measured using functional near infrared spectroscopy and muscle activity from the flexor and extensor carpi radialis (FCR/ECR) was measured using electromyography. In general, aging was associated with decreased force steadiness and force complexity with a concomitant increase in bilateral PFC activity. While motor performance remained comparable before and after the TSST stress session in both age groups, the associated neural strategies differed between groups. While the stress condition was associated with lower FCR and ECR activity in younger adults despite no change in the PFC activation, stress was associated with increases in FCR activity in older adults. This stress-related compensatory neural strategy of increasing hand/arm muscle activation, potentially via the additional recruitment of the stress-motor neural circuitry, may have played a role in maintaining motor performance in older adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Barry BK, Pascoe MA, Jesunathadas M, Enoka RM (2007) Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. J Neurophysiol 97(5):3206–3218

    Article  Google Scholar 

  2. Calautti C, Serrati C, Baron J (2001) Effects of age on brain activation during auditory-cued thumb-to-index opposition a positron emission tomography study. Stroke 32(1):139–146

    CAS  Article  Google Scholar 

  3. Carter JR, Kupiers NT, Ray CA (2005) Neurovascular responses to mental stress. J Physiol 564(1):321–327

    CAS  Article  Google Scholar 

  4. Christou EA, Jakobi JM, Critchlow A, Fleshner M, Enoka RM (2004) The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults. J Appl Physiol 97(1):225–235

    Article  Google Scholar 

  5. Dedovic K, D’Aguiar C, Pruessner JC (2009) What stress does to your brain: a review of neuroimaging studies. Can J Psychiatry 54(1):6–15. doi:10.1002/jclp.22011

    Article  PubMed  Google Scholar 

  6. Derosière G, Alexandre F, Bourdillon N, Mandrick K, Ward T, Perrey S (2014) Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neuroimage 85(Pt 1), 471–477. doi:10.1016/j.neuroimage.2013.02.006

    Article  PubMed  Google Scholar 

  7. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355

    Article  Google Scholar 

  8. Duncan A, Meek JH, Clemence M, Elwell CE, Fallon P, Tyszczuk L et al. (1996) Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr Res 39:889–894

    CAS  Article  Google Scholar 

  9. Duncko R, Cornwell B, Cui L, Merikangas KR, Grillon C (2007) Acute exposure to stress improves performance in trace eyeblink conditioning and spatial learning tasks in healthy men. Learn Mem 14(5):329–335

    Article  Google Scholar 

  10. Fox EJ, Baweja HS, Kim C, Kennedy DM, Vaillancourt DE, Christou EA (2013) Modulation of force below 1 Hz: age-associated differences and the effect of magnified visual feedback. PloS one 8(2):e55970

    CAS  Article  Google Scholar 

  11. Galen GPV, Mu ÃMLTM, Meulenbroek RGJ (2002) Forearm EMG response activity during motor performance in individuals prone to increased stress reactivity. Am J Indus Med 419:406–419. doi:10.1002/ajim.10051

    Article  Google Scholar 

  12. Heffernan KS, Sosnoff JJ, Ofori E, Jae SY, Baynard T, Collier SR, Fernhall B (2009) Complexity of force output during static exercise in individuals with Down syndrome. J Appl Physiol (Bethesda, Md 1985) 106:1227–1233. doi:10.1152/japplphysiol.90555.2008

    Article  Google Scholar 

  13. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    CAS  Article  Google Scholar 

  14. Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1201–1213

    CAS  Article  Google Scholar 

  15. Hjortskov N, Rissén D., Blangsted AK, Fallentin N, Lundberg U, Søgaard K (2004) The effect of mental stress on heart rate variability and blood pressure during computer work. Eur J Appl Physiol 92:84–89. doi:10.1007/s00421-004-1055-z

    Article  PubMed  Google Scholar 

  16. Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48:280–298. doi:10.1016/j.drugalcdep.2008.02.002.A

    Article  Google Scholar 

  17. Isingrini M, Angel L, Fay S, Taconnat L, Lemaire P, Bouazzaoui B (2015) Age-related differences in the reliance on executive control in working memory: role of task demand. PloS one 10:e0145361. doi:10.1371/journal.pone.0145361

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Jayasinghe SU, Torres SJ, Nowson CA, Tilbrook AJ, Turner AI (2014) Physiological responses to psychological stress: importance of adiposity in men aged 50–70 years. Endocr Connect 3(3):110–119. doi:10.1530/EC-14-0042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kelly MM, Tyrka AR, Anderson GM, Price LH, Carpenter LL (2008) Sex differences in emotional and physiological responses to the Trier Social Stress Test. J Behav Ther Exp Psychiatry 39:87–98. doi:10.1016/j.jbtep.2007.02.003

    Article  PubMed  Google Scholar 

  20. Koenraadt KLM, Roelofsen EGJ, Duysens J, Keijsers NLW (2014) Cortical control of normal gait and precision stepping: An fNIRS study. Neuroimage 85:415–422. doi:10.1016/j.neuroimage.2013.04.070

    Article  PubMed  Google Scholar 

  21. Kudielka BM, Hellhammer DH, Kirschbaum C, Harmon-Jones E, Winkielman P (2007) Ten years of research with the Trier Social Stress Test—revisited. In: Social neuroscience: integrating biological and psychological explanations of social behavior, pp 56–83

  22. Laidlaw DH, Bilodeau M, Enoka RM (2000) Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle nerve 23(4):600–612

    CAS  Article  Google Scholar 

  23. Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PloS one 7(1):e30481. doi:10.1371/journal.pone.0030481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Lighthall NR, Gorlick MA, Schoeke A, Frank MJ, Mather M (2013) Stress modulates reinforcement learning in younger and older adults. Psychol Aging 28(1):35

    Article  Google Scholar 

  25. Lundberg U, Forsman M, Zachau G, Eklöf M, Palmerud G, Melin B, Kadefors R (2002) Effects of experimentally induced mental and physical stress on motor unit recruitment in the trapezius muscle. Work Stress 16(2):166–178. doi:10.1080/02678370210136699

    Article  Google Scholar 

  26. Malone LA, Bastian AJ (2015) Age-related forgetting in locomotor adaptation. Neurobiol Learn Mem. doi:10.1016/j.nlm.2015.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol (1985) 106(3):857–864. doi:10.1152/japplphysiol.91324.2008

    Article  Google Scholar 

  28. Mattay VS, Fera F, Tessitore A, Hariri A, Das S, Callicott J, Weinberger D (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58(4):630–635

    CAS  Article  Google Scholar 

  29. Mehta RK (2015) Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability. Int J Obes (Lond) 39(2):208–213. doi:10.1038/ijo.2014.127

    CAS  Article  Google Scholar 

  30. Mehta RK (2016) Stunted PFC activity during neuromuscular control under stress with obesity. Eur J Appl Physiol 116(2):319–326

    CAS  Article  Google Scholar 

  31. Mehta RK, Agnew MJ (2011) Effects of concurrent physical and mental demands for a short duration static task. Int J Ind Ergon 41:488–493. doi:10.1016/j.ergon.2011.04.005

    Article  Google Scholar 

  32. Mehta RK, Agnew MJ (2012a) Effects of physical and mental demands on shoulder muscle fatigue. Work 41(Supplement 1):2897–2901

    Article  Google Scholar 

  33. Mehta RK, Agnew MJ (2012b) Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. Eur J Appl Physiol 112(8):2891–2902

    Article  Google Scholar 

  34. Mehta RK, Agnew MJ (2013) Exertion-dependent effects of physical and mental workload on physiological outcomes and task performance. IIE Trans Occup Ergon Hum Factors 1(1):3–15

    Article  Google Scholar 

  35. Mehta RK, Parasuraman R (2014) Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach. Hum Factors 56(4):645–656. doi:10.1177/0018720813507279

    Article  PubMed  Google Scholar 

  36. Mehta RK, Shortz AE (2014) Obesity-related differences in neural correlates of force control. Eur J Appl Physiol 114(1):197–204. doi:10.1007/s00421-013-2762-0

    Article  PubMed  Google Scholar 

  37. Mehta RK, Nussbaum MA, Agnew MJ (2012) Muscle-and task-dependent responses to concurrent physical and mental workload during intermittent static work. Ergonomics 55(10):1166–1179

    Article  Google Scholar 

  38. Mello AD, Mello MF, Carpenter LL, Price LH (2003) Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis. Rev Bras Psiquiatr 25(4):231–238

    Article  Google Scholar 

  39. Mitchell KJ, Johnson MK, Raye CL, D’Esposito M (2000) fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognit Brain Res 10(1):197–206

    CAS  Article  Google Scholar 

  40. Molavi B, Dumont, G. a (2012) Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas 33:259–270. doi:10.1088/0967-3334/33/2/259

    Article  PubMed  Google Scholar 

  41. Noble JW, Eng JJ, Kokotilo KJ, Boyd LA (2011) Aging effects on the control of grip force magnitude: an fMRI study. Exp Gerontol 46(6):453–461. doi:10.1016/j.exger.2011.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  42. Noven MLV, Pereira HM, TejinYoon AA, Nielson KA, Hunter SK (2014) Motor variability during sustained contractions increases with cognitive demand in older adults. Front Aging Neurosci 6:97. doi:10.3389/fnagi.2014.00097

    Article  Google Scholar 

  43. Papegaaij S, Taube W, Baudry S, Otten E, Hortobágyi T (2014) Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 6:28. doi:10.3389/fnagi.2014.00028

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pereira HM, Spears VC, Schlinder-Delap B, Yoon T, Nielson KA, Hunter SK (2015) Age and sex differences in steadiness of elbow flexor muscles with imposed cognitive demand. Eur J Appl Physiol. doi:10.1007/s00421-015-3113-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672

    CAS  Article  Google Scholar 

  46. Pulopulos MM, Hidalgo V, Almela M, Puig-Perez S, Villada C, Salvador A (2015) Acute stress and working memory in older people. Stress 18(2):178–187

    Article  Google Scholar 

  47. Robertson C, Marino F (2015) Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. Eur J Appl Physiol 115(9):1939–1948

    CAS  Article  Google Scholar 

  48. Sailer A, Dichgans J, Gerloff C (2000) The influence of normal aging on the cortical processing of a simple motor task. Neurology 55(7):979–985. doi:10.1212/WNL.55.7.979

    CAS  Article  PubMed  Google Scholar 

  49. Seidler-Dobrin RD, Stelmach G (1998) Persistence in visual feedback control by the elderly. Exp Brain Res 119(4):467–474

    CAS  Article  Google Scholar 

  50. Shortz AE, Mehta RK (2017) Cognitive challenges, aging, and neuromuscular fatigue. Physiology Behavior 170:19–26

    CAS  Article  Google Scholar 

  51. Shortz AE, Pickens A, Zheng Q, Mehta RK (2015) The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women. J Neuroeng Rehabil 12(1):1

    Article  Google Scholar 

  52. Slavich GM, Way BM, Eisenberger NI, Taylor SE (2010) Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc Natl Acad Sci USA 107(33):14817–14822. doi:10.1073/pnas.1009164107

    Article  PubMed  Google Scholar 

  53. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777

    CAS  Article  Google Scholar 

  54. Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-aho PO, Karjalainen PA (2014) Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed 113:210–220. doi:10.1016/j.cmpb.2013.07.024

    Article  PubMed  Google Scholar 

  55. Tillfors M, Furmark T, Marteinsdottir I, Fischer H, Pissiota A, Långström B, Fredrikson M (2001) Cerebral blood flow in subjects with social phobia during stressful speaking tasks: A PET study. Am J Psychiatry 158:1220–1226. doi:10.1176/appi.ajp.158.8.1220

    CAS  Article  PubMed  Google Scholar 

  56. Tracy BL (2007) Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles. Hum Mov Sci 26(6):796–807

    Article  Google Scholar 

  57. Tracy BL, Enoka RM (2002) Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J Appl Physiol 92(3):1004–1012

    Article  Google Scholar 

  58. Tracy BL, Maluf KS, Stephenson JL, Hunter SK, Enoka RM (2005) Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle Nerve 32(4):533–540

    Article  Google Scholar 

  59. Tunney N, Taylor LF, Gaddy M, Rosenfeld A, Pearce N, Tamanini J, Treby A (2003) Aging and motor learning of a functional motor task. Phys Occup Therapy Geriatr 21:1–16. doi:10.1300/J148v21n03_01

    Article  Google Scholar 

  60. Vaillancourt DE, Newell KM (2003) Aging and the time and frequency structure of force output variability. J Appl Physiol 94:903–912. doi:10.1152/japplphysiol.00166.2002

    Article  PubMed  Google Scholar 

  61. van Dijk H, Mulder T, Hermens HJ (2007) Effects of age and content of augmented feedback on learning an isometric force-production task. Exp Aging Res 33:341–353. doi:10.1080/03610730701319194

    Article  PubMed  Google Scholar 

  62. Vieluf S, Temprado J-J, Berton E, Jirsa VK, Sleimen-Malkoun R (2015) Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes. BMC Neurosci 16:1–17. doi:10.1186/s12868-015-0153-7

    Article  Google Scholar 

  63. Volkow ND, Gur RC, Wang G-J, Fowler JS, Moberg PJ, Ding Y-S et al. (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155(3):344–349

    CAS  PubMed  Google Scholar 

  64. Wang J, Rao H, Wetmore GS, Furlan PM, Korczykowski M, Dinges DF, Detre JA (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci USA 102(49):17804–17809

    CAS  Article  Google Scholar 

  65. Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126(Pt 4):873–888. doi:10.1093/brain/awg071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Williams RA, Hagerty BM, Brooks G (2004) Trier Social Stress Test: a method for use in nursing research. Nurs Res 53(4):277–280

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Sydney and J.L. Huffines Institute for Sports Medicine and Human Performance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjana K. Mehta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehta, R.K., Rhee, J. Age-specific neural strategies to maintain motor performance after an acute social stress bout. Exp Brain Res 235, 2049–2057 (2017). https://doi.org/10.1007/s00221-017-4949-9

Download citation

Keywords

  • fNIRS
  • PFC
  • Cognition
  • Force steadiness
  • Approximate entropy
  • Motor control
  • EMG