Visual information from observing grasping movement in allocentric and egocentric perspectives: development in typical children

Abstract

Development of the motor system lags behind that of the visual system and might delay some visual properties more closely linked to action. We measured the developmental trajectory of the discrimination of object size from observation of the biological motion of a grasping action in egocentric and allocentric viewpoints (observing action of others or self), in children and adolescents from 5 to 18 years of age. Children of 5–7 years of age performed the task at chance, indicating a delayed ability to understand the goal of the action. We found a progressive improvement in the ability of discrimination from 9 to 18 years, which parallels the development of fine motor control. Only after 9 years of age did we observe an advantage for the egocentric view, as previously reported for adults. Given that visual and haptic sensitivity of size discrimination, as well as biological motion, are mature in early adolescence, we interpret our results as reflecting immaturity of the influence of the motor system on visual perception.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116

    CAS  Article  Google Scholar 

  2. Ansuini C, Cavallo A, Koul A, Jacono M, Yang Y, Becchio C (2015) Predicting object size from hand kinematics: a temporal perspective. PloS One 10:e0120432. doi:10.1371/journal.pone.0120432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Armand J, Olivier E, Edgley SA, Lemon RN (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266

    CAS  Article  Google Scholar 

  4. Arrighi R, Cartocci G, Burr D (2011) Reduced perceptual sensitivity for biological motion in paraplegia patients. Curr Biol 21:R910–911 doi:10.1016/j.cub.2011.09.048

    CAS  Article  PubMed  Google Scholar 

  5. Bach P, Fenton-Adams W, Tipper SP (2014) Can’t touch this: the first-person perspective provides privileged access to predictions of sensory action outcomes. J Exp Psychol Human Percept Perform 40:457–464 doi:10.1037/a0035348

    Article  Google Scholar 

  6. Biagi L, Cioni G, Fogassi L, Guzzetta A, Sgandurra G, Tosetti M (2015) Action observation network in childhood: a comparative fMRI study with adults. Dev Sci doi:10.1111/desc.12353

    Article  PubMed  Google Scholar 

  7. Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL (2003) Visual recognition of biological motion is impaired in children with autism. Psychol Sci 14:151–157

    Article  Google Scholar 

  8. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    CAS  Article  Google Scholar 

  9. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910 doi:10.1016/j.cub.2006.07.065

    CAS  Article  PubMed  Google Scholar 

  10. Campanella F, Sandini G, Morrone MC (2011) Visual information gleaned by observing grasping movement in allocentric and egocentric perspectives. Proc Biol Sci 278:2142–2149

    PubMed  Google Scholar 

  11. Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16:69–74 doi:10.1016/j.cub.2005.10.071

    CAS  Article  PubMed  Google Scholar 

  12. Cohen J (1988) Statistical power analysis for the behavioral sciences. 2nd edn. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  13. Drew AR, Quandt LC, Marshall PJ (2015) Visual influences on sensorimotor EEG responses during observation of hand actions. Brain Res 1597:119–128. doi:10.1016/j.brainres.2014.11.048

    CAS  Article  PubMed  Google Scholar 

  14. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap vol 57. Monographs on statistics and applied probability. Chapman & Hall, New York

    Google Scholar 

  15. Eyre JA (2003) Development and plasticity of the corticospinal system in man. Neural Plast 10:93–106

    CAS  Article  Google Scholar 

  16. Forssberg H (1999) Neural control of human motor development. Curr opin Neurobiol 9:676–682

    CAS  Article  Google Scholar 

  17. Geangu E, Senna I, Croci E, Turati C (2015) The effect of biomechanical properties of motion on infants’ perception of goal-directed grasping actions. J Exp child Psychol 129:55–67. doi:10.1016/j.jecp.2014.08.005

    Article  PubMed  Google Scholar 

  18. Goodale M (2014) How (and why) the visual control of action differs from visual perception. Proc Biol Sci 281:20140337. doi:10.1098/rspb.2014.0337

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goodale M, Milner AD (1992) Separate pathways for perception and action. TINS 15:20–25

    CAS  PubMed  Google Scholar 

  20. Gori M, Del Viva M, Sandini G, Burr DC (2008) Young children do not integrate visual and haptic form information. Curr Biol 18:694–698. doi:10.1016/j.cub.2008.04.036

    CAS  Article  PubMed  Google Scholar 

  21. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  22. Hadad B, Schwartz S, Maurer D, Lewis TL (2015) Motion perception: a review of developmental changes and the role of early visual experience. Front Integr Neurosci 9:49. doi:10.3389/fnint.2015.00049

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heineman KR, Middelburg KJ, Hadders-Algra M (2010) Development of adaptive motor behaviour in typically developing infants. Acta Paediatr 99:618–624

    CAS  Article  Google Scholar 

  24. Heinen F, Glocker FX, Fietzek U, Meyer BU, Lucking CH, Korinthenberg R (1998) Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608–612

    CAS  Article  Google Scholar 

  25. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Perception Psychophysics 14:201–211

    Article  Google Scholar 

  26. Knoblich G, Flach R (2001) Predicting the effects of actions: interactions of perception and action. Psychol Sci 12:467–472

    CAS  Article  Google Scholar 

  27. Knoblich G, Seigerschmidt E, Flach R, Prinz W (2002) Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. Q J Exp Psychol A (Human Experimental Psychology) 55:1027–1046. doi:10.1080/02724980143000631

    Article  Google Scholar 

  28. Kuhtz-Buschbeck JP, Stolze H, Johnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 122:424–432

    CAS  Article  Google Scholar 

  29. Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594

    CAS  Article  Google Scholar 

  30. Mulligan D, Hodges NJ (2014) Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychol Res 78:692–704. doi:10.1007/s00426-013-0526-4

    Article  PubMed  Google Scholar 

  31. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    CAS  Article  Google Scholar 

  32. Pavlova M, Krageloh-Mann I, Sokolov A, Birbaumer N (2001) Recognition of point-light biological motion displays by young children. Perception 30:925–933

    CAS  Article  Google Scholar 

  33. Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274. doi:10.1038/nrn2805

    CAS  Article  PubMed  Google Scholar 

  34. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670. doi:10.1038/35090060

    CAS  Article  PubMed  Google Scholar 

  35. Rochat P (1989) Object Manipulation and exploration in 2-month-old to 5-month-old infants. Dev Psychol 25:871–884. doi:10.1037//0012-1649.25.6.871

    Article  Google Scholar 

  36. Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550

    CAS  Article  Google Scholar 

  37. Sweeny TD, Wurnitsch N, Gopnik A, Whitney D (2013) Sensitive perception of a person’s direction of walking by 4-year-old children. Dev Psychol 49:2120–2124. doi:10.1037/a0031714

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tomassini A, Spinelli D, Jacono M, Sandini G, Morrone MC (2015) Rhythmic oscillations of visual contrast sensitivity synchronized with action. J Neurosci 35:7019–7029. doi:10.1523/JNEUROSCI.4568-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. NeuroImage 48:564–584. doi:10.1016/j.neuroimage.2009.06.009

    Article  PubMed  Google Scholar 

  40. Vandermeer A, Vanderweel R (1995) Keeping the arm in the limelight: the functional significance of neonatal arm movements. Stud Percept Action 3:269–272

    Google Scholar 

  41. von Hofsten C (1991) Structuring of early reaching movements: a longitudinal study. J Motor Behav 23:280–292 doi:10.1080/00222895.1991.9942039

    Article  Google Scholar 

  42. Woodward AL (1998) Infants selectively encode the goal object of an actor’s reach. Cognition 69:1–34. doi:10.1016/S0010-0277(98)00058-4

    CAS  Article  PubMed  Google Scholar 

  43. Zhao J, Wang L, Wang Y, Weng X, Li S, Jiang Y (2014) Developmental tuning of reflexive attentional effect to biological motion cues. Sci Rep 4:5558. doi:10.1038/srep05558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Antonino Santagati for his supporting in collecting data in children and adolescents and Francesco Campanella for providing the visual stimuli and Prof David Burr for proof reading of the manuscript and helpful discussion. This research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FPT/2007–2013), Grant agreement #338866 ECSPLAIN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta Morrone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tinelli, F., Cioni, G., Sandini, G. et al. Visual information from observing grasping movement in allocentric and egocentric perspectives: development in typical children. Exp Brain Res 235, 2039–2047 (2017). https://doi.org/10.1007/s00221-017-4944-1

Download citation

Keywords

  • Biological motion
  • Children
  • Allocentric perspective
  • Egocentric perspective
  • Grasping
  • Size perception