Skip to main content

Advertisement

Log in

A threat to a virtual hand elicits motor cortex activation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant’s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3–C4) negativity were clearly observed when the virtual hand was threatened—as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The EEG equipment was supplied by Guger Technologies, www.gtec.at.

References

  • Armel KC, Ramachandran VS (2003) Projecting sensations to external objects: evidence from skin conductance response. Proc Biol Sci 270:1499–1506

    Article  PubMed Central  PubMed  Google Scholar 

  • Avenanti A, Bueti D, Galati G, Aglioti SM (2005) Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci 8:955–960

    Article  CAS  PubMed  Google Scholar 

  • Avenanti A, Paluello IM, Bufalari I, Aglioti SM (2006) Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain. Neuroimage 32:316–324

    Article  PubMed  Google Scholar 

  • Avenanti A, Sirigu A, Aglioti SM (2010) Racial bias reduces empathic sensorimotor resonance with other-race pain. Curr Biol 20:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C, Capotosto P, Brancucci A, Del Percio C, Petrini L, Buttiglione M, Cibelli G, Romani GL, Rossini PM, Arendt-Nielsen L (2008) Cortical alpha rhythms are related to the anticipation of sensorimotor interaction between painful stimuli and movements: a high-resolution EEG study. J Pain 9:902–911

    Article  PubMed  Google Scholar 

  • Banakou D, Groten R, Slater M (2013) Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci 110(31):12846–12851

    Article  CAS  PubMed  Google Scholar 

  • Blanke O (2012) Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13:556–571

    CAS  PubMed  Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands’ feel’touch that eyes see. Nature 391:756

    Article  CAS  PubMed  Google Scholar 

  • Bufalari I, Aprile T, Avenanti A, Di Russo F, Aglioti SM (2007) Empathy for pain and touch in the human somatosensory cortex. Cereb Cortex 17:2553–2561

    Article  PubMed  Google Scholar 

  • Cheng Y, Yang C-Y, Lin C-P, Lee P-L, Decety J (2008) The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study. Neuroimage 40:1833–1840

    Article  PubMed  Google Scholar 

  • Decety J, Jackson PL (2004) The functional architecture of human empathy. Behav Cogn Neurosci Rev 3:71–100

    Article  PubMed  Google Scholar 

  • Ehrsson HH (2007) The experimental induction of out-of-body experiences. Science 317:1048

    Article  CAS  PubMed  Google Scholar 

  • Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    Article  CAS  PubMed  Google Scholar 

  • Eimer M (1998) The lateralized readiness potential as an on-line measure of central response activation processes. Behav Res Methods Instrum Comput 30:146–156

    Article  Google Scholar 

  • Evans N, Blanke O (2013) Shared electrophysiology mechanisms of body ownership and motor imagery. Neuroimage 64:216–228

    Article  PubMed  Google Scholar 

  • Fan Y, Han S (2008) Temporal dynamic of neural mechanisms involved in empathy for pain: an event-related brain potential study. Neuropsychologia 46:160–173

    Article  PubMed  Google Scholar 

  • Fridlund AJ, Cacioppo JT (1986) Guidelines for human electromyographic research. Psychophysiology 23:567–589

    Article  CAS  PubMed  Google Scholar 

  • Gillies M, Spanlang B (2010) Comparing and evaluating real time character engines for virtual environments. Presence-Teleop Virt 19:95–117

    Article  Google Scholar 

  • Gu X, Han S (2007) Attention and reality constraints on the neural processes of empathy for pain. NeuroImage 36:256–267

    Article  PubMed  Google Scholar 

  • Ijsselsteijn WA, de Kort YAW, Haans A (2006) Is this my hand I see before me? The rubber hand illusion in reality, virtual reality, and mixed reality. Presence (Camb) 15:455–464

    Article  Google Scholar 

  • Jackson PL, Meltzoff AN, Decety J (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 24:771–779

    Article  PubMed  Google Scholar 

  • Kalckert A, Ehrsson HH (2012) Moving a rubber hand that feels like your own: dissociation of ownership and agency. Front Hum Neurosci 6:40. doi:10.3389/fnhum.2012.00040

  • Kaplan D (2009) Structural equation modeling: foundations and extensions. Sage, Thousand Oaks, CA

    Google Scholar 

  • Kilteni K, Normand J-M, Sanchez-Vives MV, Slater M (2012) Extending body space in immersive virtual reality: a very long arm illusion. PLoS One 7:e40867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilteni K, Bergstrom I, Slater M (2013) Drumming in immersive virtual reality: the body shapes the way we play. IEEE Trans Vis Comput Graph 19:597–605

    Article  PubMed  Google Scholar 

  • Lamm C, Batson CD, Decety J (2007) The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci 19:42–58

    Article  PubMed  Google Scholar 

  • Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-consciousness. Science 317:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Li W, Han S (2010) Perspective taking modulates event-related potentials to perceived pain. Neurosci Lett 469:328–332

    Article  CAS  PubMed  Google Scholar 

  • Llobera J, Sanchez-Vives MV, Slater M (2013) The relationship between virtual body ownership and temperature sensitivity. J R Soc Interface 10(85):1742–5662. doi:10.1098/rsif.2013.0300

    Google Scholar 

  • Longo MR, Schüür F, Kammers MPM, Tsakiris M, Haggard P (2008) What is embodiment? A psychometric approach. Cognition 107:978–998

    Article  PubMed  Google Scholar 

  • Maister L, Sebanz N, Knoblich G, Tsakiris M (2013) Experiencing ownership over a dark-skinned body reduces implicit racial bias. Cognition 128:170–178

    Article  PubMed Central  PubMed  Google Scholar 

  • Maselli A, Slater M (2013) The building blocks of the full body ownership illusion. Front Hum Neurosci 7:83. doi:10.3389/fnhum.2013.00083

  • Meng J, Hu L, Shen L, Yang Z, Chen H, Huang X, Jackson T (2012) Emotional primes modulate the responses to others’ pain: an ERP study. Exp Brain Res 220:277–286

    Article  PubMed  Google Scholar 

  • Meng J, Jackson T, Chen H, Hu L, Yang Z, Su Y, Huang X (2013) Pain perception in the self and observation of others: an ERP investigation. NeuroImage 72:164–173

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW (2004) Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol 115:1760–1766

    Article  PubMed  Google Scholar 

  • Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn Brain Res 25:668–677

    Article  Google Scholar 

  • Peck T, Seinfeld S, Aglioti S, Slater M (2013) Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious Cogn 22:779–787

    Article  PubMed  Google Scholar 

  • Perry A, Bentin S, Bartal I-A, Lamm C, Decety J (2010) “Feeling” the pain of those who are different from us: modulation of EEG in the mu/alpha range. Cogn Affect Behav Neurosci 10:493–504

    Article  PubMed  Google Scholar 

  • Petkova VI, Ehrsson HH (2008) If I were you: perceptual illusion of body swapping. PLoS One 3:e3832

    Article  PubMed Central  PubMed  Google Scholar 

  • Petkova VI, Khoshnevis M, Ehrsson HH (2011) The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Front Psychol 2:35. doi:10.3389/fpsyg.2011.00035

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Preston SD, de Waal FBM (2002) Empathy: its ultimate and proximate bases. Behav Brain Sci 25:1–20

    PubMed  Google Scholar 

  • Sanchez-Vives MV, Slater M (2005) From presence to consciousness through virtual reality. Nat Rev Neurosci 6:332–339

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, Spanlang B, Frisoli A, Bergamasco M, Slater M (2010) Virtual hand illusion induced by visuomotor correlations. PLoS One 5:e10381

    Article  PubMed Central  PubMed  Google Scholar 

  • Slater M, Pérez Marcos D, Ehrsson H, Sanchez-Vives MV (2008) Towards a digital body: the virtual arm illusion. Front Hum Neurosci 2:6. doi:10.3389/neuro.09.006.2008

  • Slater M, Spanlang B, Sanchez-Vives MV, Blanke O (2010) First person experience of body transfer in virtual reality. PLoS One 5(5):e10564. doi:10.1371/journal.pone.0010564

    Article  PubMed Central  PubMed  Google Scholar 

  • Steptoe W, Steed A, Slater M (2013) Human tails: ownership and control of extended humanoid avatars. IEEE Trans Vis Comput Graph 19(4):583–590

    Google Scholar 

  • Swart H, Hewstone M, Christ O, Voci A (2010) The impact of crossgroup friendships in South Africa: affective mediators and multigroup comparisons. J Soc Issues 66:309–333

    Article  Google Scholar 

  • Tecchia F, Carrozzino M, Bacinelli S, Rossi F, Vercelli D, Marino G, Gasparello P, Bergamasco M (2010) A flexible framework for wide-spectrum VR development. Presence (Camb) 19:302–312

    Article  Google Scholar 

  • Tsakiris M, Haggard P (2005) The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform 31:80–91

    Article  PubMed  Google Scholar 

  • Whitmarsh S, Nieuwenhuis ILC, Barendregt H, Jensen O (2011) Sensorimotor alpha activity is modulated in response to the observation of pain in others. Front Hum Neurosci 5:91. doi:10.3389/fnhum.2011.00091

  • Yang C-Y, Decety J, Lee S, Chen C, Cheng Y (2009) Gender differences in the mu rhythm during empathy for pain: an electroencephalographic study. Brain Res 1251:176–184

    Article  CAS  PubMed  Google Scholar 

  • Yetkin FZ, Mueller WM, Hammeke TA, Morris GLI, Haughton VM (1995) Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 36:921–925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the European Union FP7 Integrated Project VERE (No. 257695). MGF’s research was supported by the FI-DGR pre-doctorate grant from the Catalan government co-funded by the European Social Fund (EC-ESF). ARF has been supported by a research grant from the Spanish government (PSI2011-29219). The ERC project TRAVERSE (#227985) also contributed towards this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Slater.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 12188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Franco, M., Peck, T.C., Rodríguez-Fornells, A. et al. A threat to a virtual hand elicits motor cortex activation. Exp Brain Res 232, 875–887 (2014). https://doi.org/10.1007/s00221-013-3800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3800-1

Keywords

Navigation