Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation

Abstract

In this study locomotor and gaze dysfunction commonly observed in astronauts following spaceflight were modeled using two Galvanic vestibular stimulation (GVS) paradigms: (1) pseudorandom, and (2) head-coupled (proportional to the summed vertical linear acceleration and yaw angular velocity obtained from a head-mounted Inertial Measurement Unit). Locomotor and gaze function during GVS were assessed by tests previously used to evaluate post-flight astronaut performance; dynamic visual acuity (DVA) during treadmill locomotion at 80 m/min, and navigation of an obstacle course. During treadmill locomotion with pseudorandom GVS there was a 12% decrease in coherence between head pitch and vertical translation at the step frequency relative to the no GVS condition, which was not significantly different to the 15% decrease in coherence observed in astronauts following shuttle missions. This disruption in head stabilization likely resulted in a decrease in DVA equivalent to the reduction in acuity observed in astronauts 6 days after return from extended missions aboard the International Space Station (ISS). There were significant increases in time-to-completion of the obstacle course during both pseudorandom (21%) and head-coupled (14%) GVS, equivalent to an ISS astronaut 5 days post-landing. An attempt to suppress head movement was evident during both pseudorandom and head-coupled GVS while negotiating the obstacle course, with a 20 and 16%, decrease in head pitch and yaw velocity, respectively. The results of this study demonstrate that pseudorandom GVS generates many of the salient features of post-flight locomotor dysfunction observed in astronauts following short and long duration missions. An ambulatory GVS system may prove a useful adjunct to the current pre-flight astronaut training regimen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Head movement was not measured during the FMT.

References

  1. Anderson DJ, Reschke MF, Homick JE, Werness SAS (1986) Dynamic posture analysis of Spacelab-1 crew members. Exp Brain Res 64:380–391

    PubMed  CAS  Article  Google Scholar 

  2. Bach M (1996) The Freiburg Visual Acuity test-automatic measurement of visual acuity. Optom Vis Sci 73:49–53

    PubMed  CAS  Google Scholar 

  3. Balter SG, Castelijns MH, Stokroos RJ, Kingma H (2004) Galvanic-induced body sway in vestibular schwannoma patients: evidence for stimulation of the central vestibular system. Acta Otolaryngol 124:1015–1021

    PubMed  Article  Google Scholar 

  4. Benson AJ, Vieville T (1986) European vestibular experiments on the Spacelab-1 mission: 6. Yaw axis vestibulo-ocular reflex. Exp Brain Res 64:279–283

    PubMed  CAS  Google Scholar 

  5. Berthoz A, Brandt T, Dichgans J, Probst T, Bruzek W, Vieville T (1986) European vestibular experiments on the Spacelab-1 mission: 5. Contribution of the otoliths to the vertical vestibulo-ocular reflex. Exp Brain Res 64:272–278

    PubMed  CAS  Article  Google Scholar 

  6. Black FO (2001) What can posturography tell us about vestibular function? Ann NY Acad Sci 942:446–464

    PubMed  CAS  Article  Google Scholar 

  7. Black FO, Paloski WH, Doxey-Gasway DD, Reschke MF (1995) Vestibular plasticity following orbital spaceflight: recovery from postflight postural instabilty. Acta Otolaryngol Suppl 1995:450–454

    Google Scholar 

  8. Bles W, De Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulate space sickness. J Gravit Physiol 4:1–4

    Google Scholar 

  9. Bloomberg JJ, Mulavara AP (2003) Changes in walking strategies after spaceflight. IEEE Eng Med Biol Mag 22:58–62

    PubMed  Article  Google Scholar 

  10. Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7:161–177

    PubMed  CAS  Article  Google Scholar 

  11. Bloomberg JJ, Layne CS, McDonald PV, Peters BT, Huebner WP, Reschke MF, Berthoz A, Glasauer S, Newman D, Jackson DK (1999) Effects of space flight on locomotor control. In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA Johnson Space Center, Houston

  12. Bloomberg JJ, Mulavara AP, Cohen H, Richards JT, Miller C, Peters BT, Marshburn AM, Brady R (2004) Patterns of recovery in locomotor function following long-duration spaceflight. J Vestib Res 14:280 (Abstract)

    Google Scholar 

  13. Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86:2118–2122

    PubMed  CAS  Google Scholar 

  14. Carlsen AN, Kennedy PM, Anderson KG, Cressman EK, Nagelkerke P, Chua R (2005) Identifying visual-vestibular contributions during target-directed locomotion. Neurosci Lett 384:217–221

    PubMed  CAS  Article  Google Scholar 

  15. Clarke AH, Grigull J, Mueller R, Scherer H (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134:322–334

    PubMed  CAS  Article  Google Scholar 

  16. Clement G (1998) Alteration of eye movements and motion perception in microgravity. Brain Res Brain Res Rev 28:161–172

    PubMed  CAS  Article  Google Scholar 

  17. Coats AC (1972) The sinusoidal galvanic body-sway response. Acta Otolaryngol 74:155–162

    PubMed  CAS  Google Scholar 

  18. Cohen HS (2000) Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res 10:7–15

    PubMed  CAS  Google Scholar 

  19. Cohen B, Kozlovskaya IB, Raphan T, Solomon D, Helwig D, Cohen N, Sirota M, Yakushin SB (1992) Vestibulo-ocular reflex of rhesus monkeys after space flight. J Appl Physiol 73(2 Suppl ):121S–131S

    PubMed  CAS  Google Scholar 

  20. Dai M, McGarvie L, Kozlovskaya IB, Raphan T, Cohen B (1994) Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res 102:45–56

    PubMed  CAS  Article  Google Scholar 

  21. Deshpande N, Patla AE (2005) Dynamic visual-vestibular integration during goal directed human locomotion. Exp Brain Res 166(2):237–247

    PubMed  Article  Google Scholar 

  22. Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256

    PubMed  CAS  Google Scholar 

  23. Groen E, De Graaf B, Bles W, Bos JE (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40:331–335

    PubMed  CAS  Article  Google Scholar 

  24. Harm DL, Reschke MF, Parker DE (1999) Visual vestibular integration: motion perception reporting. In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA Johnson Space Center, Houston, pp 5.2-1–5.2-12

    Google Scholar 

  25. Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130

    PubMed  CAS  Article  Google Scholar 

  26. Hlavacka F, Njiokiktjien C (1985) Postural responses evoked by sinusoidal galvanic stimulation of the labyrinth. Influence of head position. Acta Otolaryngol 99:107–112

    PubMed  CAS  Google Scholar 

  27. Homick JJ, Reschke MF (1977) Postural equilibrium following extended exposure to weightless space flight. Acta Otolaryngol 83:445–464

    Google Scholar 

  28. Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18

    PubMed  CAS  Article  Google Scholar 

  29. Kennedy PM, Carlsen AN, Inglis JT, Chow R, Franks IM, Chua R (2003) Relative contributions of visual and vestibular information on the trajectory of human gait. Exp Brain Res 153:113–117

    PubMed  Article  Google Scholar 

  30. Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission:5. Postural responses following exposure to weightlessness. Exp Brain Res 64:335–346

    PubMed  CAS  Article  Google Scholar 

  31. Keshner EA, Peterson BW (1995) Mechanisms controlling human head stabilization I: Head-neck dynamics during random rotations in the horizontal plane. J Neurophysiol 73:2293–2301

    PubMed  CAS  Google Scholar 

  32. Keshner EA, Cromwell RL, Peterson BW (1995) Mechanisms controlling human head stabilization II: head-neck characteristics during random rotations in the vertical plane. J Neurophysiol 73:2302–2312

    PubMed  CAS  Google Scholar 

  33. Kim J, Curthoys IS (2004) Responses of primary vestibular afferents to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig. Brain Res Bull (In press)

  34. Kleine JF, Grusser OJ (1996) Responses of rat primary afferent vestibular neurons to galvanic polarization of the labyrinth. Ann N Y Acad Sci 781:639–641

    PubMed  CAS  Google Scholar 

  35. Krizkova M, Hlavacka F (1994) Binaural monopolar galvanic vestibular stimulation reduces body sway during human stance. Physiol Res 43:187–192

    PubMed  CAS  Google Scholar 

  36. Latt LD, Sparto PJ, Furman JM, Redfern MS (2003) The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation. Gait Posture 18:64–72

    PubMed  CAS  Article  Google Scholar 

  37. Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: The Best PEST. Behav Res Meth Instr 14:21–25

    Google Scholar 

  38. Macdougall HG, Moore ST (2005) Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. J Appl Physiol 99:1164–1173

    PubMed  Article  Google Scholar 

  39. MacDougall HG, Brizuela AE, Curthoys IS (2003) Linearity, symmetry and additivity of the human eye-movement response to maintained unilateral and bilateral surface galvanic (DC) vestibular stimulation. Exp Brain Res 148:166–175

    PubMed  Google Scholar 

  40. MacDougall H, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with Galvanic vestibular stimulation. Exp Brain Res (in press)

  41. Moore ST, Hirasaki E, Cohen B, Raphan T (1999) Effect of viewing distance on the generation of vertical eye movements during locomotion. Exp Brain Res 129:347–361

    PubMed  CAS  Article  Google Scholar 

  42. Moore ST, Clement G, Raphan T, Cohen B (2001a) Ocular counterrolling induced by centrifugation during orbital space flight. Exp Brain Res 137:323–335

    CAS  Article  Google Scholar 

  43. Moore ST, Hirasaki E, Raphan T, Cohen B (2001b) The human vestibulo-ocular reflex during linear locomotion. In: Goebel J, Highstein SM (eds) The vestibular labyrinth in health and disease. New York Academy of Sciences, New York, pp 139–147

    Google Scholar 

  44. Moore ST, Clement G, Dai M, Raphan T, Solomon D, Cohen B (2003) Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights. J Vestib Res 13:377–393

    PubMed  Google Scholar 

  45. Moore ST, Cohen B, Raphan T, Berthoz A, Clement G (2005) Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight. Exp Brain Res 160:38–59

    PubMed  Article  Google Scholar 

  46. NASA (2005) Bioastronautics Roadmap. NASA/SP-2004-6113

  47. Nashner LM (1993) Computerized Dynamic Posturography. In: Jacobson GP, Newman CW, Kartush JM (eds) Handbook of Balance Function Testing. Mosby Year Book, St Louis, pp 298–301

    Google Scholar 

  48. Nooij SAE, Bos JE, Ockels WJ (2004) Investigation of vestibular adaptation to changing gravity levels on Earth. J Vest Res 14:133 (Abstract)

    Google Scholar 

  49. Ockels WJ, Furrer R, Messerschmid E (1990) Simulation of space adaptation syndrome on earth. Exp Brain Res 79:661–663

    PubMed  CAS  Article  Google Scholar 

  50. Oman CM, Pouliot CF, Natapoff A (1996) Horizontal angular VOR changes in orbital and parabolic flight: human neurovestibular studies on SLS-2. J Appl Physiol 81:69–81

    PubMed  CAS  Google Scholar 

  51. Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. In: Cohen B, Tomko D, Guedry F (eds) Sensing and controlling motion: vestibular and sensorimotor function, vol 656. New York Academy of Sciences, New York, pp 747–754

  52. Paloski WH, Black FO, Reschke MF, Calkins DS, Shupert C (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14:9–17

    PubMed  CAS  Google Scholar 

  53. Paloski WH, Reschke MF, Black FO (1999) Recovery of Postural Equilibrium Control Following Space Flight (DSO 605). In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA, Houston, pp 5.4:1–16

  54. Paloski WH, Black FO, Metter EJ (2004) Postflight balance control recovery in an elderly astronaut: a case report. Otol Neurotol 25:53–56

    PubMed  Article  Google Scholar 

  55. Pavlik AE, Inglis JT, Lauk M, Oddsson L, Collins JJ (1999) The effects of stochastic galvanic vestibular stimulation on human postural sway. Exp Brain Res 124:273–280

    PubMed  CAS  Article  Google Scholar 

  56. Peng GC, Hain TC, Peterson BW (1996) A dynamical model for reflex activated head movements in the horizontal plane. Biol Cybern 75:309–319

    PubMed  CAS  Article  Google Scholar 

  57. Peng GC, Hain TC, Peterson BW (1999) Predicting vestibular, proprioceptive and biomechanical control strategies in normal and pathological head movements. IEEE Trans Biomed Eng 46:1269–1280

    PubMed  CAS  Article  Google Scholar 

  58. Peters BT, Bloomberg JJ (2005) Dynamic visual acuity using “far” and “near” targets. Acta Otolaryngol 125:353–357

    PubMed  Article  Google Scholar 

  59. Petersen H, Magnusson M, Fransson PA, Johansson R (1994) Vestibular disturbance at frequencies above 1 Hz affects human postural control. Acta Otolaryngol 114:225–230

    PubMed  CAS  Google Scholar 

  60. Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106

    PubMed  CAS  Article  Google Scholar 

  61. Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans II: patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217

    PubMed  CAS  Article  Google Scholar 

  62. Reschke MF, Anderson DJ, Homick JL (1986) Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res 64:367–379

    PubMed  CAS  Article  Google Scholar 

  63. Scinicariello AP, Inglis JT, Collins JJ (2002) The effects of stochastic monopolar galvanic vestibular stimulation on human postural sway. J Vestib Res 12:77–85

    PubMed  Google Scholar 

  64. Shumway-Cook A, Horak FB (1986) Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther 66:1548–1550

    PubMed  CAS  Google Scholar 

  65. Watson SR, Brizuela AE, Curthoys IS, Colebatch JG, MacDougall HG, Halmagyi GM (1998) Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans. Exp Brain Res 122:453–458

    PubMed  CAS  Article  Google Scholar 

  66. Watt DGD, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64:308–315

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA grant NNJ04HF51G and a National Space Biomedical Research Institute (NSBRI) Tactical Integration and Planning grant through NASA NCC 9-58 (Steven Moore).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven T. Moore.

Electronic supplementary material

Supplementary material 1

Supplementary material 2

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moore, S.T., MacDougall, H.G., Peters, B.T. et al. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation. Exp Brain Res 174, 647–659 (2006). https://doi.org/10.1007/s00221-006-0528-1

Download citation

Keywords

  • Space adaptation syndrome
  • Microgravity
  • Head stabilization
  • DVA
  • GVS