Skip to main content
Log in

Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this study locomotor and gaze dysfunction commonly observed in astronauts following spaceflight were modeled using two Galvanic vestibular stimulation (GVS) paradigms: (1) pseudorandom, and (2) head-coupled (proportional to the summed vertical linear acceleration and yaw angular velocity obtained from a head-mounted Inertial Measurement Unit). Locomotor and gaze function during GVS were assessed by tests previously used to evaluate post-flight astronaut performance; dynamic visual acuity (DVA) during treadmill locomotion at 80 m/min, and navigation of an obstacle course. During treadmill locomotion with pseudorandom GVS there was a 12% decrease in coherence between head pitch and vertical translation at the step frequency relative to the no GVS condition, which was not significantly different to the 15% decrease in coherence observed in astronauts following shuttle missions. This disruption in head stabilization likely resulted in a decrease in DVA equivalent to the reduction in acuity observed in astronauts 6 days after return from extended missions aboard the International Space Station (ISS). There were significant increases in time-to-completion of the obstacle course during both pseudorandom (21%) and head-coupled (14%) GVS, equivalent to an ISS astronaut 5 days post-landing. An attempt to suppress head movement was evident during both pseudorandom and head-coupled GVS while negotiating the obstacle course, with a 20 and 16%, decrease in head pitch and yaw velocity, respectively. The results of this study demonstrate that pseudorandom GVS generates many of the salient features of post-flight locomotor dysfunction observed in astronauts following short and long duration missions. An ambulatory GVS system may prove a useful adjunct to the current pre-flight astronaut training regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Head movement was not measured during the FMT.

References

  • Anderson DJ, Reschke MF, Homick JE, Werness SAS (1986) Dynamic posture analysis of Spacelab-1 crew members. Exp Brain Res 64:380–391

    Article  PubMed  CAS  Google Scholar 

  • Bach M (1996) The Freiburg Visual Acuity test-automatic measurement of visual acuity. Optom Vis Sci 73:49–53

    PubMed  CAS  Google Scholar 

  • Balter SG, Castelijns MH, Stokroos RJ, Kingma H (2004) Galvanic-induced body sway in vestibular schwannoma patients: evidence for stimulation of the central vestibular system. Acta Otolaryngol 124:1015–1021

    Article  PubMed  Google Scholar 

  • Benson AJ, Vieville T (1986) European vestibular experiments on the Spacelab-1 mission: 6. Yaw axis vestibulo-ocular reflex. Exp Brain Res 64:279–283

    PubMed  CAS  Google Scholar 

  • Berthoz A, Brandt T, Dichgans J, Probst T, Bruzek W, Vieville T (1986) European vestibular experiments on the Spacelab-1 mission: 5. Contribution of the otoliths to the vertical vestibulo-ocular reflex. Exp Brain Res 64:272–278

    Article  PubMed  CAS  Google Scholar 

  • Black FO (2001) What can posturography tell us about vestibular function? Ann NY Acad Sci 942:446–464

    Article  PubMed  CAS  Google Scholar 

  • Black FO, Paloski WH, Doxey-Gasway DD, Reschke MF (1995) Vestibular plasticity following orbital spaceflight: recovery from postflight postural instabilty. Acta Otolaryngol Suppl 1995:450–454

    Google Scholar 

  • Bles W, De Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulate space sickness. J Gravit Physiol 4:1–4

    Google Scholar 

  • Bloomberg JJ, Mulavara AP (2003) Changes in walking strategies after spaceflight. IEEE Eng Med Biol Mag 22:58–62

    Article  PubMed  Google Scholar 

  • Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7:161–177

    Article  PubMed  CAS  Google Scholar 

  • Bloomberg JJ, Layne CS, McDonald PV, Peters BT, Huebner WP, Reschke MF, Berthoz A, Glasauer S, Newman D, Jackson DK (1999) Effects of space flight on locomotor control. In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA Johnson Space Center, Houston

  • Bloomberg JJ, Mulavara AP, Cohen H, Richards JT, Miller C, Peters BT, Marshburn AM, Brady R (2004) Patterns of recovery in locomotor function following long-duration spaceflight. J Vestib Res 14:280 (Abstract)

    Google Scholar 

  • Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86:2118–2122

    PubMed  CAS  Google Scholar 

  • Carlsen AN, Kennedy PM, Anderson KG, Cressman EK, Nagelkerke P, Chua R (2005) Identifying visual-vestibular contributions during target-directed locomotion. Neurosci Lett 384:217–221

    Article  PubMed  CAS  Google Scholar 

  • Clarke AH, Grigull J, Mueller R, Scherer H (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134:322–334

    Article  PubMed  CAS  Google Scholar 

  • Clement G (1998) Alteration of eye movements and motion perception in microgravity. Brain Res Brain Res Rev 28:161–172

    Article  PubMed  CAS  Google Scholar 

  • Coats AC (1972) The sinusoidal galvanic body-sway response. Acta Otolaryngol 74:155–162

    PubMed  CAS  Google Scholar 

  • Cohen HS (2000) Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res 10:7–15

    PubMed  CAS  Google Scholar 

  • Cohen B, Kozlovskaya IB, Raphan T, Solomon D, Helwig D, Cohen N, Sirota M, Yakushin SB (1992) Vestibulo-ocular reflex of rhesus monkeys after space flight. J Appl Physiol 73(2 Suppl ):121S–131S

    PubMed  CAS  Google Scholar 

  • Dai M, McGarvie L, Kozlovskaya IB, Raphan T, Cohen B (1994) Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res 102:45–56

    Article  PubMed  CAS  Google Scholar 

  • Deshpande N, Patla AE (2005) Dynamic visual-vestibular integration during goal directed human locomotion. Exp Brain Res 166(2):237–247

    Article  PubMed  Google Scholar 

  • Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256

    PubMed  CAS  Google Scholar 

  • Groen E, De Graaf B, Bles W, Bos JE (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40:331–335

    Article  PubMed  CAS  Google Scholar 

  • Harm DL, Reschke MF, Parker DE (1999) Visual vestibular integration: motion perception reporting. In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA Johnson Space Center, Houston, pp 5.2-1–5.2-12

    Google Scholar 

  • Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130

    Article  PubMed  CAS  Google Scholar 

  • Hlavacka F, Njiokiktjien C (1985) Postural responses evoked by sinusoidal galvanic stimulation of the labyrinth. Influence of head position. Acta Otolaryngol 99:107–112

    PubMed  CAS  Google Scholar 

  • Homick JJ, Reschke MF (1977) Postural equilibrium following extended exposure to weightless space flight. Acta Otolaryngol 83:445–464

    Google Scholar 

  • Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PM, Carlsen AN, Inglis JT, Chow R, Franks IM, Chua R (2003) Relative contributions of visual and vestibular information on the trajectory of human gait. Exp Brain Res 153:113–117

    Article  PubMed  Google Scholar 

  • Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission:5. Postural responses following exposure to weightlessness. Exp Brain Res 64:335–346

    Article  PubMed  CAS  Google Scholar 

  • Keshner EA, Peterson BW (1995) Mechanisms controlling human head stabilization I: Head-neck dynamics during random rotations in the horizontal plane. J Neurophysiol 73:2293–2301

    PubMed  CAS  Google Scholar 

  • Keshner EA, Cromwell RL, Peterson BW (1995) Mechanisms controlling human head stabilization II: head-neck characteristics during random rotations in the vertical plane. J Neurophysiol 73:2302–2312

    PubMed  CAS  Google Scholar 

  • Kim J, Curthoys IS (2004) Responses of primary vestibular afferents to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig. Brain Res Bull (In press)

  • Kleine JF, Grusser OJ (1996) Responses of rat primary afferent vestibular neurons to galvanic polarization of the labyrinth. Ann N Y Acad Sci 781:639–641

    PubMed  CAS  Google Scholar 

  • Krizkova M, Hlavacka F (1994) Binaural monopolar galvanic vestibular stimulation reduces body sway during human stance. Physiol Res 43:187–192

    PubMed  CAS  Google Scholar 

  • Latt LD, Sparto PJ, Furman JM, Redfern MS (2003) The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation. Gait Posture 18:64–72

    Article  PubMed  CAS  Google Scholar 

  • Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: The Best PEST. Behav Res Meth Instr 14:21–25

    Google Scholar 

  • Macdougall HG, Moore ST (2005) Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. J Appl Physiol 99:1164–1173

    Article  PubMed  Google Scholar 

  • MacDougall HG, Brizuela AE, Curthoys IS (2003) Linearity, symmetry and additivity of the human eye-movement response to maintained unilateral and bilateral surface galvanic (DC) vestibular stimulation. Exp Brain Res 148:166–175

    PubMed  Google Scholar 

  • MacDougall H, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with Galvanic vestibular stimulation. Exp Brain Res (in press)

  • Moore ST, Hirasaki E, Cohen B, Raphan T (1999) Effect of viewing distance on the generation of vertical eye movements during locomotion. Exp Brain Res 129:347–361

    Article  PubMed  CAS  Google Scholar 

  • Moore ST, Clement G, Raphan T, Cohen B (2001a) Ocular counterrolling induced by centrifugation during orbital space flight. Exp Brain Res 137:323–335

    Article  CAS  Google Scholar 

  • Moore ST, Hirasaki E, Raphan T, Cohen B (2001b) The human vestibulo-ocular reflex during linear locomotion. In: Goebel J, Highstein SM (eds) The vestibular labyrinth in health and disease. New York Academy of Sciences, New York, pp 139–147

    Google Scholar 

  • Moore ST, Clement G, Dai M, Raphan T, Solomon D, Cohen B (2003) Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights. J Vestib Res 13:377–393

    PubMed  Google Scholar 

  • Moore ST, Cohen B, Raphan T, Berthoz A, Clement G (2005) Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight. Exp Brain Res 160:38–59

    Article  PubMed  Google Scholar 

  • NASA (2005) Bioastronautics Roadmap. NASA/SP-2004-6113

  • Nashner LM (1993) Computerized Dynamic Posturography. In: Jacobson GP, Newman CW, Kartush JM (eds) Handbook of Balance Function Testing. Mosby Year Book, St Louis, pp 298–301

    Google Scholar 

  • Nooij SAE, Bos JE, Ockels WJ (2004) Investigation of vestibular adaptation to changing gravity levels on Earth. J Vest Res 14:133 (Abstract)

    Google Scholar 

  • Ockels WJ, Furrer R, Messerschmid E (1990) Simulation of space adaptation syndrome on earth. Exp Brain Res 79:661–663

    Article  PubMed  CAS  Google Scholar 

  • Oman CM, Pouliot CF, Natapoff A (1996) Horizontal angular VOR changes in orbital and parabolic flight: human neurovestibular studies on SLS-2. J Appl Physiol 81:69–81

    PubMed  CAS  Google Scholar 

  • Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. In: Cohen B, Tomko D, Guedry F (eds) Sensing and controlling motion: vestibular and sensorimotor function, vol 656. New York Academy of Sciences, New York, pp 747–754

  • Paloski WH, Black FO, Reschke MF, Calkins DS, Shupert C (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14:9–17

    PubMed  CAS  Google Scholar 

  • Paloski WH, Reschke MF, Black FO (1999) Recovery of Postural Equilibrium Control Following Space Flight (DSO 605). In: Sawin CF, Taylor GR, Smith WL (eds) Extended Duration Orbiter Medical Project Final Report 1989–1995 (NASA/SP-1999-534). NASA, Houston, pp 5.4:1–16

  • Paloski WH, Black FO, Metter EJ (2004) Postflight balance control recovery in an elderly astronaut: a case report. Otol Neurotol 25:53–56

    Article  PubMed  Google Scholar 

  • Pavlik AE, Inglis JT, Lauk M, Oddsson L, Collins JJ (1999) The effects of stochastic galvanic vestibular stimulation on human postural sway. Exp Brain Res 124:273–280

    Article  PubMed  CAS  Google Scholar 

  • Peng GC, Hain TC, Peterson BW (1996) A dynamical model for reflex activated head movements in the horizontal plane. Biol Cybern 75:309–319

    Article  PubMed  CAS  Google Scholar 

  • Peng GC, Hain TC, Peterson BW (1999) Predicting vestibular, proprioceptive and biomechanical control strategies in normal and pathological head movements. IEEE Trans Biomed Eng 46:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Peters BT, Bloomberg JJ (2005) Dynamic visual acuity using “far” and “near” targets. Acta Otolaryngol 125:353–357

    Article  PubMed  Google Scholar 

  • Petersen H, Magnusson M, Fransson PA, Johansson R (1994) Vestibular disturbance at frequencies above 1 Hz affects human postural control. Acta Otolaryngol 114:225–230

    PubMed  CAS  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106

    Article  PubMed  CAS  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans II: patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217

    Article  PubMed  CAS  Google Scholar 

  • Reschke MF, Anderson DJ, Homick JL (1986) Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res 64:367–379

    Article  PubMed  CAS  Google Scholar 

  • Scinicariello AP, Inglis JT, Collins JJ (2002) The effects of stochastic monopolar galvanic vestibular stimulation on human postural sway. J Vestib Res 12:77–85

    PubMed  Google Scholar 

  • Shumway-Cook A, Horak FB (1986) Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther 66:1548–1550

    PubMed  CAS  Google Scholar 

  • Watson SR, Brizuela AE, Curthoys IS, Colebatch JG, MacDougall HG, Halmagyi GM (1998) Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans. Exp Brain Res 122:453–458

    Article  PubMed  CAS  Google Scholar 

  • Watt DGD, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64:308–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA grant NNJ04HF51G and a National Space Biomedical Research Institute (NSBRI) Tactical Integration and Planning grant through NASA NCC 9-58 (Steven Moore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Moore.

Electronic supplementary material

Supplementary material 1

Supplementary material 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.T., MacDougall, H.G., Peters, B.T. et al. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation. Exp Brain Res 174, 647–659 (2006). https://doi.org/10.1007/s00221-006-0528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0528-1

Keywords

Navigation