Communications in Mathematical Physics

, Volume 186, Issue 3, pp 671–700 | Cite as

Correlation Spectrum of Quenched and Annealed Equilibrium States for Random Expanding Maps

  • Viviane Baladi


We show that the integrated transfer operators for positively weighted independent identically distributed smooth expanding systems give rise to annealed equilibrium states for a new variational principle. The unique annealed equilibrium state coincides with the unique annealed Gibbs state. Using work of Ruelle [1990] and Fried [1995] on generalised Fredholm determinants for transfer operators, we prove that the discrete spectrum of the transfer operators coincides with the correlation spectrum of these invariant measures (yielding exponential decay of correlations), and with the poles of an annealed zeta function, defined also for complex weights. A modified integrated transfer operator is introduced, which describes the (relativised) quenched states studied e.g. by Kifer [1992], and conditions (including SRB) ensuring coincidence of quenched and annealed states are given. For small random perturbations we obtain stability results on the quenched and annealed measures and spectra by applying perturbative results of Young and the author [1993].


Equilibrium State Exponential Decay Invariant Measure Variational Principle Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Viviane Baladi
    • 1
  1. 1.Section de Mathématiques, Université de Genève, CH-1211 Geneva 24, Switzerland.¶E-mail: Viviane.Baladi@math.unige.chCH

Personalised recommendations