Long-Time Asymptotics for the Spin-1 Gross–Pitaevskii Equation

Abstract

On the basis of the spectral analysis of the \(4\times 4\) Lax pair associated with the spin-1 Gross–Pitaevskii equation and the scattering matrix, the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is transformed into the solution to the corresponding Riemann–Hilbert problem. The Deift–Zhou nonlinear steepest descent method is extended to the Riemann–Hilbert problem, from which a model Riemann–Hilbert problem is established with the help of distinct factorizations of the jump matrix for the Riemann–Hilbert problem and a decomposition of the matrix-valued spectral function. Finally, the long-time asymptotics of the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. 2.

    Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Google Scholar 

  3. 3.

    Andreiev, K., Egorova, I., Lange, T.L., Teschl, G.: Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent. J. Differ. Equ. 261(10), 5371–5410 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Arruda, L.K., Lenells, J.: Long-time asymptotics for the derivative nonlinear Schrödinger equation on the half-line. Nonlinearity 30(11), 4141–4172 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Beals, R., Coifman, R.R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37(1), 39–90 (1984)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  7. 7.

    Boutet de Monvel, A., Its, A., Kotlyarov, V.: Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line. Commun. Math. Phys. 290(2): 479–522 (2009)

  8. 8.

    Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41(4), 1559–1588 (2009)

  9. 9.

    Boutet de Monvel, A., Lenells, J., Shepelsky, D.: Long-time asymptotics for the Degasperis–Procesi equation on the half-line. Ann. Inst. Fourier 69(1), 171–230 (2019)

  10. 10.

    Boutet de Monvel, A., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26(7), 2081–2107 (2013)

  11. 11.

    Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach. J. Phys. A 48(3), 035204 (2015)

  12. 12.

    Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation: a Riemann–Hilbert approach. C. R. Math. Acad. Sci. Paris 352(3), 189–195 (2014)

  13. 13.

    Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: A Riemann–Hilbert approach for the Novikov equation. SIGMA Sym. Integr. Geom. Methods Appl. 12, 095 (2016)

  14. 14.

    Cheng, P.J., Venakides, S., Zhou, X.: Long-time asymptotics for the pure radiation solution of the Sine–Gordon equation. Commun. Partial Differ. Equ. 24(7–8), 1195–1262 (1999)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Constantin, A., Ivanov, R.I., Lenells, J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23(10), 2559–2575 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Fokas, A.S., Zakharov, V.E. (eds.) Important Developments in Soliton Theory, pp. 181–204. Springer, Berlin (1993)

    Google Scholar 

  17. 17.

    Deift, P., Park, J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. IMRN 24, 5505–5624 (2011)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Deift, P.A., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 137(2), 295–368 (1993)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Egorova, I., Michor, J., Teschl, G.: Rarefaction waves for the Toda equation via nonlinear steepest descent. Discrete Continue Dyn. Syst. 38(4), 2007–2028 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Methods for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)

    ADS  Article  Google Scholar 

  21. 21.

    Geng, X.G., Chen, M.M., Wang, K.D.: Long-time asymptotics of the coupled modified Korteweg–de Vries equation. J. Geom. Phys. 142, 151–167 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28(2), 739–763 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Giavedoni, P.: Long-time asymptotic analysis of the Korteweg–de Vries equation via the dbar steepest descent method: the soliton region. Nonlinearity 30(3), 1165–1181 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Griffin, A., Snoke, D.W., Stringari, S.: Bose-Einstein Condensation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  25. 25.

    Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195–207 (1963)

    ADS  Article  Google Scholar 

  26. 26.

    Grunert, K., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom. 12(3), 287–324 (2009)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose–Einstein condensates. Phys. Rev. Lett. 93(19), 194102 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    Kanna, T., Sakkaravarthi, K., Senthil Kumar, C., Lakshmanan, M., Wadati, M.: Painlevé singularity structure analysis of three component Gross–Pitaevskii type equations. J. Math. Phys. 50(11), 113520 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Emergent Nonlinear Phenomena in Bose–Einstein Condensates. Springer, Berlin (2008)

    Google Scholar 

  30. 30.

    Kitaev, A.V., Vartanian, A.H.: Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector. Inverse Prob. 13(5), 1311–1339 (1997)

    ADS  Article  Google Scholar 

  31. 31.

    Kitaev, A.V., Vartanian, A.H.: Asymptotics of solutions to the modified nonlinear Schrödinger equation: solution on a nonvanishing continuous background. SIAM J. Math. Anal. 30(4), 787–832 (1999)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Lenells, J.: The nonlinear steepest descent method: asymptotics for initial-boundary value problems. SIAM J. Math. Anal. 48(3), 2076–2118 (2016)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Liu, H., Geng, X.G., Xue, B.: The Deift–Zhou steepest descent method to long-time asymptotics for the Sasa–Satsuma equation. J. Differential Equations 265(11), 5984–6008 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Minakov, A.: Long-time behavior of the solution to the mKdV equation with step-like initial data. J. Phys. A 44(8), 085206 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Rogel-Salazar, J.: The Gross–Pitaevskii equation and Bose–Einstein condensates. Eur. J. Phys. 34(2), 247–257 (2013)

    Article  Google Scholar 

  36. 36.

    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  37. 37.

    Vartanian, A.H.: Higher order asymptotics of the modified non-linear Schrödinger equation. Commun. Partial Differ. Equ. 25(5–6), 1043–1098 (2000)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259(3), 1098–1148 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  40. 40.

    Yamane, H.: Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. J. Math. Soc. Jpn. 66(3), 765–803 (2014)

    ADS  Article  Google Scholar 

  41. 41.

    Yan, Z.Y.: An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a \(4 \times 4\) Lax pair on the half-line. Chaos 27(5), 053117 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Yan, Z.Y.: Initial-boundary value problem for the spin-1 Gross–Pitaevskii system with a \(4 \times 4\) Lax pair on a finite interval. J. Math. Phys. 60(8), 083511 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Yan, Z.Y., Chow, K.W., Malomed, B.A.: Exact stationary wave patterns in three coupled nonlinear Schrödinger/Gross–Pitaevskii equations. Chaos Solitons Fractals 42(5), 3013–3019 (2009)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11931017, 11871440).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kedong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H.-T. Yau

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Wang, K. & Chen, M. Long-Time Asymptotics for the Spin-1 Gross–Pitaevskii Equation. Commun. Math. Phys. (2021). https://doi.org/10.1007/s00220-021-03945-y

Download citation