Localization and IDS Regularity in the Disordered Hubbard Model within Hartree–Fock Theory


Using the fractional moment method it is shown that, within the Hartree–Fock approximation for the disordered Hubbard Hamiltonian, weakly interacting Fermions at positive temperature exhibit localization, suitably defined as exponential decay of eigenfunction correlators. Our result holds in any dimension in the regime of large disorder and at any disorder in the one dimensional case. As a consequence of our methods, we are able to show Hölder continuity of the integrated density of states with respect to energy, disorder and interaction.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6(5a), 1163–1182 (1994)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–254 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A Math. Gen. 32, 6783–6806 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Aizenmann, M., Molchanov, S.: Localization at large disorder and extreme energies: an elementary derivation. Commun. Math. Phys 157(2), 245–278 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Aizenmann, M., Warzel, S.: Random operators: disorder effects on quantum spectra and dynamics. Grad. Stud. Math. 18

  6. 6.

    Aizenmann, M., Warzel, S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290, 903–934 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Anderson, P.: Absence of difusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    ADS  Article  Google Scholar 

  8. 8.

    Beaud, V., Warzel, S.: Low-energy Fock-space localization for attractive hard-core particles in disorder. Ann. Henri Poincaré (2017)

  9. 9.

    Combes, J.M., Hislop, P., Klopp, F.: An Optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J. 140(3), 469–498 (2007)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chulaevsky, V., Suhov, Y.: Anderson localisation for an interacting two-particle quantum system on Z (2007). arXiv:0705.0657

  11. 11.

    Chulaevsky, V., Suhov, Y.: Wegner bounds for a two-particle tight binding model Comm. Math. Phys. 283, 479–489 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Chulaevsky, V., Suhov, Y.: Eigenfunctions in a two-particle Anderson tight-binding model Comm. Math. Phys. 289(2), 701–723 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Chulaevsky, V., Suhov, Y.: Multi-Scale Analysis for random quantum systems with interaction. In: Progress in Mathematical Physics, vol. 65, Birkhäuser/Springer, New York (2014)

  14. 14.

    Ducatez, R.: Anderson localization for infinitely many interacting particles in the Hartree–Fock theory. J. Spec. Theory 8(3), 1019-105 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    De Bruijn, N., Erdös, P.: Some linear and some quadratic recursion formulas, II. Nederl. Akad. Wetensch. Proc. Ser. A 55, 152–163 (1952)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Elgart, A., Klein, A., Stolz, G.: Many-body localization in the droplet spectrum of the random XXZ quantum spin chain. J. Funct. Anal. 275(1), 211–258 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Elgart, A., Klein, A., Stolz, G.: Manifestations of dynamical localization in the disordered XXZ spin chain Elgart A. Commun. Math. Phys. 361, 1083–1113 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    Hislop, P., Klopp, F., Schenker, J.: Continuity with respect to disorder of the integrated density of states. Ill. J. Math. 49(3), 893–904 (2005)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hamza, E., Sims, R., Stolz, G.: Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315, 215239 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Haínzl, C., Lewin, M., Sparber, C.: Ground state properties of graphene in Hartree–Fock theory. J. Math. Phys. 53, 095220 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Gontier, D., Hainzl, C., Lewin, M.: Lower bound on the Hartree–Fock energy of the electron gas. Phys. Rev. A 99, 052501 (2019)

    ADS  Article  Google Scholar 

  22. 22.

    Bach, V., Lieb, E., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76(1/2), 3–89 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Bach, V., Lieb, E., Loss, M., Solovej, J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    Lieb, E., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53(2), 185–194 (1977)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Kunz, H., Souillard, B.: Sur le spectre des operateurs aux differences finies aleatories. Commun. Math Phys. 78(2), 201–246 (1981)

    ADS  Article  Google Scholar 

  27. 27.

    Kurig, C.: Random Lattice Models, D77 Dissertation Johannes Gutenberg Universität Mainz (2013)

  28. 28.

    Schenker, J.: How large is large? Estimating the critical disorder for the Anderson model. Lett. Math. Phys. 105, 1–9 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Schenker, J.: Hölder equicontinuity of the density of states at weak disorder. Lett. Math. Phys. 70, 195–209 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Simon, B.: Trace ideals and their applications. In: Mathematical Surveys and Monographs, vol. 120

  31. 31.

    Stolz, G.: An introduction to the mathematics of Anderson localization. Entropy and the quantum II. Contemp. Math 552, 71–108

Download references


We thank the anonymous referee for a number of suggestions and remarks which greatly improved the exposition, in particular the proof of Lemma 11. This work was supported by the National Science Foundation under grants no 1900015 and 2000345.

Author information



Corresponding author

Correspondence to Rodrigo Matos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. Ding

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matos, R., Schenker, J. Localization and IDS Regularity in the Disordered Hubbard Model within Hartree–Fock Theory. Commun. Math. Phys. (2021). https://doi.org/10.1007/s00220-020-03933-8

Download citation