The Light Ray Transform on Lorentzian Manifolds

Abstract

We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Aicha, I.B.: Stability estimate for a hyperbolic inverse problem with time-dependent coefficient. Inverse Probl. 31(12), 125010 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bellassoued, M., Dos Santos Ferreira, D.: Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Probl. Imaging 5(4), 745–773 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bernal, A., Sanchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quantum Gravity 24, 745–749 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Feizmohammadi, A., Ilmavirta, J., Kian, Y., Oksanen, L.: Recovery of time dependent coefficients from boundary data for hyperbolic equations. Preprint arXiv:1901.04211

  5. 5.

    Guevara Vasquez, F., Milton, G., Graeme, Onofrei, D.: Active exterior cloaking for the 2D laplace and Helmholtz equations. Phys. Rev. Lett. 103, 073901 (2009)

    Article  Google Scholar 

  6. 6.

    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. Am. Math. Soc. 46, 55–97 (2009)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275, 749–789 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413–420 (2003)

    Article  Google Scholar 

  10. 10.

    Greenleaf, A., Uhlmann, G.: Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58(1), 205–240 (1989)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Greenleaf, A., Uhlmann, G.: Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ann. Inst. Fourier (Grenoble) 40(2), 443–466 (1990)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Greenleaf, A., Uhlmann, G.: Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J. Funct. Anal. 89(1), 202–232 (1990)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Greenleaf, A., Uhlmann, G.: Microlocal techniques in integral geometry. In: Integral Geometry and Tomography (Arcata, CA, 1989), Volume 113 of Contemporary Mathematics, pp. 121–135. American Mathematical Society, Providence, RI (1990)

  14. 14.

    Greenleaf, J.: Computerized tomography with ultrasound. Proc. IEEE 71, 330–337 (1983)

    Article  Google Scholar 

  15. 15.

    Holman, S., Monard, F., Stefanov, P.: The attenuated geodesic X-ray transform. Inverse Probl. 34(6), 064003 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Holman, S., Uhlmann, G.: On the microlocal analysis of the geodesic X-ray transform with conjugate points. J. Differ. Geom. 108(3), 459–494 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators. III, vol. 274. Springer, Berlin (1985). (Pseudodifferential operators)

    Google Scholar 

  19. 19.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators. IV, vol. 275. Springer, Berlin (1985). (Fourier integral operators)

    Google Scholar 

  20. 20.

    Jensen, J.A.: Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. Cambridge University Press, New York (1996)

    Google Scholar 

  21. 21.

    Kian, Y., Oksanen, L.: Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations. Int. Math. Res. Not. 2019(16), 5087–5126 (2019). https://doi.org/10.1093/imrn/rnx263

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kurylev, Y., Lassas, M., Uhlmann, G.: Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Invent. Math. 212, 781–857 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lassas, M.: Inverse problems for linear and non-linear hyperbolic equations. In: Proceedings of the International Congress of Mathematicians ICM 2018, Vol. III, pp. 3739–3760. Rio de Janeiro, Brazil (2018)

  24. 24.

    Lassas, M., Oksanen, L., Stefanov, P., Uhlmann, G.: On the inverse problem of finding cosmic strings and other topological defects. Commun. Math. Phys. 357(2), 569–595 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Monard, F., Stefanov, P., Uhlmann, G.: The geodesic ray transform on Riemannian surfaces with conjugate points. Commun. Math. Phys. 337(3), 1491–1513 (2015)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Montalto, C.: Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map. Commun. Partial Differ. Equ. 39(1), 120–145 (2014)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Oglat, A., et al.: A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 26(1), 3–13 (2018)

    Article  Google Scholar 

  28. 28.

    Ommen, S., et al.: Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102, 1788–1794 (2000)

    Article  Google Scholar 

  29. 29.

    Milton, G., Nicorovici, N.-A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462, 3027–3059 (2006)

    MathSciNet  Article  Google Scholar 

  30. 30.

    O’Neill, B.: Semi-Riemannian Geometry With Applications to Relativity, Volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983)

  31. 31.

    RabieniaHaratbar, S.: Support theorem for the light-ray transform of vector fields on Minkowski spaces. Inverse Probl. Imaging 12(2), 293–314 (2018)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Ramm, A.G., Rakesh, : Property \(C\) and an inverse problem for a hyperbolic equation. J. Math. Anal. Appl. 156(1), 209–219 (1991)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Ramm, A.G., Sjöstrand, J.: An inverse problem of the wave equation. Math. Z. 206(1), 119–130 (1991)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Sachs, R.K., Wu, H.-H.: General Relativity for Mathematicians, vol. 48. Springer, Berlin (2012)

    Google Scholar 

  35. 35.

    Salazar, R.: Determination of time-dependent coefficients for a hyperbolic inverse problem. Inverse Probl. 29(9), 095015–17 (2013)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Stefanov, P.: Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials. Math. Z. 201(4), 541–559 (1989)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Stefanov, P.: Support theorems for the light ray transform on analytic Lorentzian manifolds. Proc. Am. Math. Soc. 145(3), 1259–1274 (2017)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Stefanov, P., Uhlmann, G.: Microlocal Analysis and Integral Geometry. http://www.math.purdue.edu/~stefanop/publications/book.pdf, in progress

  39. 39.

    Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123(3), 445–467 (2004)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Stefanov, P., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82(2), 383–409 (2009)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Stefanov, P., Uhlmann, G.: The geodesic X-ray transform with fold caustics. Anal. PDE 5(2), 219–260 (2012)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Stefanov, P., Uhlmann, G., Vasy, A.: Boundary rigidity with partial data. J. Am. Math. Soc. 29(2), 299–332 (2016)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Stefanov, P., Yang, Y.: The inverse problem for the Dirichlet-to-Neumann map on Lorentzian manifolds. Anal. PDE 11(6), 1381–1414 (2018)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Wang, Y.: Parametrices for the light ray transform on Minkowski spacetime. Inverse Probl. Imaging 12(1), 229–237 (2018)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Waters, A.: Stable determination of X-Ray transforms of time dependent potentials from partial boundary data. Commun. Partial Differ. Equ. 39(12), 2169–2197 (2014)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Waters, A.: Stable determination of X-ray transforms of time dependent potentials from partial boundary data. Comm. Partial. Differ. Equ. 39(12), 2169–2197 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Plamen Stefanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ML partly supported by Academy of Finland, Grants 273979, 284715, 312110, 314879 and the AtMath project of UH.

LO partly supported by EPSRC Grant EP/P01593X/1 and EP/R002207/1.

PS partly supported by NSF Grants DMS-1600327 and DMS-1900475.

GU was partly supported by NSF a Walker Family Endowed Professorship at UW ad a Si-Yuan Professorship at HKUST.

Communicated by P. Chrusciel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lassas, M., Oksanen, L., Stefanov, P. et al. The Light Ray Transform on Lorentzian Manifolds. Commun. Math. Phys. 377, 1349–1379 (2020). https://doi.org/10.1007/s00220-020-03703-6

Download citation