Skip to main content

Advertisement

Log in

Isospectral Flows Related to Frobenius–Stickelberger–Thiele Polynomials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The isospectral deformations of the Frobenius–Stickelberger–Thiele (FST) polynomials introduced in Spiridonov et al. (Commun Math Phys 272:139–165, 2007) are studied. For a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. In the second part of the paper the spectral problem used previously in the study of the modified Camassa–Holm (mCH) peakon lattice is interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice. Furthermore, it is pointed out that the degenerate case of the finite FST lattice unexpectedly maps to the interlacing peakon ODE system associated with the two-component mCH equation studied in Chang et al. (Adv Math 299:1–35, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. Duke Math. J. 80, 215–62 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., van Moerbeke, P.: String-orthogonal polynomials, string equations, and 2-Toda symmetries. Commun. Pure Appl. Math. 50, 241–290 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, M., van Moerbeke, P.: Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems. Commun. Math. Phys. 207(3), 589–620 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aitken, A.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1959)

    MATH  Google Scholar 

  5. Álvarez-Fernández, C., Mañas, M.: Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies. Adv. Math. 240, 132–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Álvarez-Fernández, C., Prieto, U.F., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ariznabarreta, G., Mañas, M.: Multivariate orthogonal polynomials and integrable systems. Adv. Math. 302, 628–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aptekarev, A., Branquinho, A., Marcellán, F.: Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comput. Appl. Math. 78(1), 139–160 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baker, G., Graves-Morris, P.: Padé Approximants. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons, strings, and the finite Toda lattice. Commun. Pure Appl. Math. 54(1), 91–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, X., Chen, X., Hu, X., Tam, H.: About several classes of bi-orthogonal polynomials and discrete integrable systems. J. Phys. A Math. Theor. 48, 015204 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chang, X., He, Y., Hu, X., Li, S.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys. 364, 1069–1119 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chang, X., Hu, X., Li, S.: Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type. Nonlinearity 31, 4746–4775 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chang, X., Hu, X., Li, S.: Moment modification, multipeakons, and nonisospectral generalizations. J. Differ. Equ. 265, 3858–3887 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chang, X., Hu, X., Li, S., Zhao, J.: An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type. Adv. Math. 338, 1077–1118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang, X., Hu, X., Szmigielski, J.: Multipeakons of a two-component modified Camassa–Holm equation and the relation with the finite Kac–van Moerbeke lattice. Adv. Math. 299, 1–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa–Holm equation. Commun. Math. Phys. 358(1), 295–341 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chu, M.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frobenius, G., Stickelberger, L.: Über die addition und multiplication der elliptischen functionen. J. Reine Angew. Math. 88, 146–184 (1880)

    MathSciNet  MATH  Google Scholar 

  21. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes, vol. 3. New York University, New York (2000)

    MATH  Google Scholar 

  22. Deift, P., Nanda, T., Tomei, C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–22 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kac, M., van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16(2), 160–169 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kharchev, S., Mironov, A., Zhedanov, A.: Faces of relativistic Toda chain. Int. J. Mod. Phys. A 12(15), 2675–2724 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139(1), 75–94 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Nakamura, Y., Zhedanov, A.: Special solutions of the Toda chain and combinatorial numbers. J. Phys. A 37, 5849 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Nenciu, I.: Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. 11, 647–686 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papageorgiou, V., Grammaticos, B., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett. Math. Phys. 34(2), 91–101 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peherstorfer, F., Spiridonov, V.P., Zhedanov, A.S.: Toda chain, Stieltjes function, and orthogonal polynomials. Theor. Math. Phys. 151(1), 505–528 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ragnisco, O., Bruschi, M.M.: Peakons, r-matrix and Toda lattice. Physica A 228, 150–159 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Rutishauser, H.: Der quotienten-differenzen-algorithmus. Zeitschrift für angewandte Mathematik und Physik ZAMP 5(3), 233–251 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Spiridonov, V., Tsujimoto, S., Zhedanov, A.: Integrable discrete time chains for the Frobenius–Stickelberger–Thiele polynomials. Commun. Math. Phys. 272(1), 139–165 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Spiridonov, V., Zhedanov, A.: Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials. Methods Appl. Anal. 2(4), 369–398 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A Math. Theor. 30(24), 8727–8737 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Symes, W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Thiele, T.: Interpolationsrechnung. B.G. Teubner, Leipzig (1909)

    MATH  Google Scholar 

  37. Tsujimoto, S., Nakamura, Y., Iwasaki, M.: The discrete Lotka–Volterra system computes singular values. Inverse Problems 17, 53–58 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Vinet, L., Zhedanov, A.: An integrable chain and bi-orthogonal polynomials. Lett. Math. Phys. 46(3), 233–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Watkins, D., Elsner, L.: Self-similar flows. Linear Algebra Appl. 110, 213–242 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X.C. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11688101, 11731014, 11701550) and the Youth Innovation Promotion Association CAS. X.H. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017 and 11871336). J.S. was supported in part by the Natural Sciences and Engineering Research Council of Canada. A.Z. was supported in part by the National Natural Science Foundation of China (Grant No. 11771015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ke Chang.

Additional information

Communicated by P. Deift

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, XK., Hu, XB., Szmigielski, J. et al. Isospectral Flows Related to Frobenius–Stickelberger–Thiele Polynomials. Commun. Math. Phys. 377, 387–419 (2020). https://doi.org/10.1007/s00220-019-03616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03616-z

Navigation