Isospectral Flows Related to Frobenius–Stickelberger–Thiele Polynomials

Abstract

The isospectral deformations of the Frobenius–Stickelberger–Thiele (FST) polynomials introduced in Spiridonov et al. (Commun Math Phys 272:139–165, 2007) are studied. For a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. In the second part of the paper the spectral problem used previously in the study of the modified Camassa–Holm (mCH) peakon lattice is interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice. Furthermore, it is pointed out that the degenerate case of the finite FST lattice unexpectedly maps to the interlacing peakon ODE system associated with the two-component mCH equation studied in Chang et al. (Adv Math 299:1–35, 2016).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. Duke Math. J. 80, 215–62 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Adler, M., van Moerbeke, P.: String-orthogonal polynomials, string equations, and 2-Toda symmetries. Commun. Pure Appl. Math. 50, 241–290 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Adler, M., van Moerbeke, P.: Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems. Commun. Math. Phys. 207(3), 589–620 (1999)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Aitken, A.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1959)

    Google Scholar 

  5. 5.

    Álvarez-Fernández, C., Mañas, M.: Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies. Adv. Math. 240, 132–193 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Álvarez-Fernández, C., Prieto, U.F., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Ariznabarreta, G., Mañas, M.: Multivariate orthogonal polynomials and integrable systems. Adv. Math. 302, 628–739 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Aptekarev, A., Branquinho, A., Marcellán, F.: Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comput. Appl. Math. 78(1), 139–160 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Baker, G., Graves-Morris, P.: Padé Approximants. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  10. 10.

    Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons, strings, and the finite Toda lattice. Commun. Pure Appl. Math. 54(1), 91–106 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Chang, X., Chen, X., Hu, X., Tam, H.: About several classes of bi-orthogonal polynomials and discrete integrable systems. J. Phys. A Math. Theor. 48, 015204 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Chang, X., He, Y., Hu, X., Li, S.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys. 364, 1069–1119 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Chang, X., Hu, X., Li, S.: Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type. Nonlinearity 31, 4746–4775 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Chang, X., Hu, X., Li, S.: Moment modification, multipeakons, and nonisospectral generalizations. J. Differ. Equ. 265, 3858–3887 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Chang, X., Hu, X., Li, S., Zhao, J.: An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type. Adv. Math. 338, 1077–1118 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Chang, X., Hu, X., Szmigielski, J.: Multipeakons of a two-component modified Camassa–Holm equation and the relation with the finite Kac–van Moerbeke lattice. Adv. Math. 299, 1–35 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa–Holm equation. Commun. Math. Phys. 358(1), 295–341 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Chu, M.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Frobenius, G., Stickelberger, L.: Über die addition und multiplication der elliptischen functionen. J. Reine Angew. Math. 88, 146–184 (1880)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes, vol. 3. New York University, New York (2000)

    Google Scholar 

  22. 22.

    Deift, P., Nanda, T., Tomei, C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–22 (1983)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Kac, M., van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16(2), 160–169 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Kharchev, S., Mironov, A., Zhedanov, A.: Faces of relativistic Toda chain. Int. J. Mod. Phys. A 12(15), 2675–2724 (1997)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139(1), 75–94 (2002)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Nakamura, Y., Zhedanov, A.: Special solutions of the Toda chain and combinatorial numbers. J. Phys. A 37, 5849 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Nenciu, I.: Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. 11, 647–686 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Papageorgiou, V., Grammaticos, B., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett. Math. Phys. 34(2), 91–101 (1995)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Peherstorfer, F., Spiridonov, V.P., Zhedanov, A.S.: Toda chain, Stieltjes function, and orthogonal polynomials. Theor. Math. Phys. 151(1), 505–528 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Ragnisco, O., Bruschi, M.M.: Peakons, r-matrix and Toda lattice. Physica A 228, 150–159 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Rutishauser, H.: Der quotienten-differenzen-algorithmus. Zeitschrift für angewandte Mathematik und Physik ZAMP 5(3), 233–251 (1954)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Spiridonov, V., Tsujimoto, S., Zhedanov, A.: Integrable discrete time chains for the Frobenius–Stickelberger–Thiele polynomials. Commun. Math. Phys. 272(1), 139–165 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Spiridonov, V., Zhedanov, A.: Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials. Methods Appl. Anal. 2(4), 369–398 (1995)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A Math. Theor. 30(24), 8727–8737 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  35. 35.

    Symes, W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Thiele, T.: Interpolationsrechnung. B.G. Teubner, Leipzig (1909)

    Google Scholar 

  37. 37.

    Tsujimoto, S., Nakamura, Y., Iwasaki, M.: The discrete Lotka–Volterra system computes singular values. Inverse Problems 17, 53–58 (2001)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Vinet, L., Zhedanov, A.: An integrable chain and bi-orthogonal polynomials. Lett. Math. Phys. 46(3), 233–245 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Watkins, D., Elsner, L.: Self-similar flows. Linear Algebra Appl. 110, 213–242 (1988)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

X.C. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11688101, 11731014, 11701550) and the Youth Innovation Promotion Association CAS. X.H. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017 and 11871336). J.S. was supported in part by the Natural Sciences and Engineering Research Council of Canada. A.Z. was supported in part by the National Natural Science Foundation of China (Grant No. 11771015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ke Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Deift

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, XK., Hu, XB., Szmigielski, J. et al. Isospectral Flows Related to Frobenius–Stickelberger–Thiele Polynomials. Commun. Math. Phys. 377, 387–419 (2020). https://doi.org/10.1007/s00220-019-03616-z

Download citation