Skip to main content
Log in

A Nonlocal Isoperimetric Problem with Dipolar Repulsion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 12 July 2022

This article has been updated

Abstract

We study a geometric variational problem for sets in the plane in which the perimeter and a regularized dipolar interaction compete under a mass constraint. In contrast to previously studied nonlocal isoperimetric problems, here the nonlocal term asymptotically localizes and contributes to the perimeter term to leading order. We establish existence of generalized minimizers for all values of the dipolar strength, mass and regularization cutoff and give conditions for existence of classical minimizers. For subcritical dipolar strengths we prove that the limiting functional is a renormalized perimeter and that for small cutoff lengths all mass-constrained minimizers are disks. For critical dipolar strength, we identify the next-order \(\Gamma \)-limit when sending the cutoff length to zero and prove that with a slight modification of the dipolar kernel there exist masses for which classical minimizers are not disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Gaithersburg (1964)

    MATH  Google Scholar 

  2. Alberti, G., Choksi, R., Otto, F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22, 569–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Vestn. Leningr. Univ. 13, 5–8 (1958)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000)

    MATH  Google Scholar 

  5. Andelman, D., Broçhard, F., Joanny, J.F.: Phase transitions in Langmuir monolayers of polar molecules. J. Chem. Phys. 86, 3673–3681 (1987)

    Article  ADS  Google Scholar 

  6. Andelman, D., Rosensweig, R.E.: Modulated phases: review and recent results. J. Phys. Chem. B 113, 3785–3798 (2009)

    Article  Google Scholar 

  7. Bétermin, L., Knüpfer, H.: On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal. J. Nonlinear Sci. 28, 1629–1656 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \({\mathbb{R}}^N\). SIAM J. Math. Anal. 46, 2310–2349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnesen, T.: Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  10. Born, M.: Über elektrostatische Gitterpotentiale. Z. Phys. 7, 124–140 (1921)

    Article  ADS  Google Scholar 

  11. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Choksi, R., Muratov, C.B., Topaloglu, I.: An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Not. Am. Math. Soc. 64, 1275–1283 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Choksi, R., Peletier, M.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp interface functional. SIAM J. Math. Anal. 42, 1334–1370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choksi, R., Peletier, M.A.: Small volume fraction limit of the diblock copolymer problem: II. Diffuse interface functional. SIAM J. Math. Anal. 43, 739–763 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cicalese, M., Spadaro, E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66, 1298–1333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciraolo, G., Maggi, F.: On the shape of compact hypersurfaces with almost-constant mean curvature. Commun. Pure Appl. Math. 70, 665–716 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciraolo, G., Vezzoni, L.: A sharp quantitative version of Alexandrov’s theorem via the method of moving planes. J. Eur. Math. Soc. 20, 261–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Daneri, S., Runa, E.: Exact periodic stripes for a minimizers of a local/non-local interaction functional in general dimension. Arch. Ration. Mech. Anal. (2018) (published online)

  19. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Figalli, A., Maggi, F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201, 143–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Killip, R., Nam, P.T.: Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106, 1033–1036 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47, 4436–4450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuglede, B.: Bonnesen’s inequality for the isoperimetric deficiency of closed curves in the plane. Geom. Dedicata 38, 283–300 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gamow, G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126, 632–644 (1930)

    Article  MATH  ADS  Google Scholar 

  25. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Volume 80 of Monographs in Mathematics. Birkhäuser, Basel (1984)

    Book  Google Scholar 

  26. Goldman, D., Muratov, C.B., Serfaty, S.: The \(\Gamma \)-limit of the two-dimensional Ohta–Kawasaki energy. I. Droplet density. Arch. Ration. Mech. Anal. 210, 581–613 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goldman, D., Muratov, C.B., Serfaty, S.: The \(\Gamma \)-limit of the two-dimensional Ohta–Kawasaki energy. Droplet arrangement via the renormalized energy. Arch. Ration. Mech. Anal. 212, 445–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldman, M., Runa, E.: On the optimality of stripes in a variational model with non-local interactions. Preprint arXiv:1611.07228 (2016)

  29. Heisenberg, W.: Structure and Properties of the Nuclei (1932–1935). In: Blum, W., Dürr, H.-P., Rechenberg, H. (eds.) Werner Heisenberg: Collected Works, Series A/Part II, pp. 197–238. Springer, Berlin (1989)

    Google Scholar 

  30. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  31. Jackson, D.P., Goldstein, R.E., Cebers, A.O.: Hydrodynamics of fingering instabilities in dipolar fluids. Phys. Rev. E 50, 298–307 (1994)

    Article  ADS  Google Scholar 

  32. Julin, V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. 63, 77–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kent-Dobias, J.: Energy-driven pattern formation in planar dipole–dipole systems. HMC Senior Thesis, Harvey Mudd College (2014)

  34. Kent-Dobias, J., Bernoff, A.J.: Energy-driven pattern formation in planar dipole–dipole systems in the presence of weak noise. Phys. Rev. E 91, 032919 (2015)

    Article  ADS  Google Scholar 

  35. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Commun. Pure Appl. Math. 66, 1129–1162 (2013)

    Article  MATH  Google Scholar 

  36. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Commun. Pure Appl. Math. 67, 1974–1994 (2014)

    Article  MATH  Google Scholar 

  37. Knüpfer, H., Muratov, C.B., Nolte, F.: Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Ration. Mech. Anal. 232, 727–761 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345, 141–183 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Langer, S.A., Goldstein, R.E., Jackson, D.P.: Dynamics of labyrinthine pattern formation in magnetic fluids. Phys. Rev. A 46, 4894–4904 (1992)

    Article  ADS  Google Scholar 

  40. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker model. Commun. Pure Appl. Math. 67, 1605–1617 (2014)

    Article  MATH  Google Scholar 

  42. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  43. Magnanini, R., Poggesi, G.: Serrin’s Problem and Alexandrov’s Soap Bubble Theorem: Enhanced Stability Via Integral Identities. arXiv:1708.07392 (2017)

  44. McConnell, H.M., Moy, V.T.: Shapes of finite two-dimensional lipid domains. J. Phys. Chem. 92, 4520–4525 (1988)

    Article  Google Scholar 

  45. Morini, M., Sternberg, P.: Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46, 2033–2051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S., Fullerton, E.E.: Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35, R157–R167 (2002)

    Article  ADS  Google Scholar 

  47. Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66(066108), 1–25 (2002)

    MathSciNet  Google Scholar 

  48. Muratov, C.B.: Droplet phases in non-local Ginzburg–Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299, 45–87 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Muthukumar, M., Ober, C.K., Thomas, E.L.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277, 1225–1232 (1997)

    Article  Google Scholar 

  50. Osserman, R.: Bonnesen-style isoperimetric inequalities. Am. Math. Mon. 86, 1–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  51. Otto, F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141, 63–103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pethick, C.J., Ravenhall, D.G.: Matter at large neutron excess and the physics of neutron-star crusts. Ann. Rev. Nucl. Part. Sci. 45, 429–484 (1995)

    Article  ADS  Google Scholar 

  53. Rigot, S.: Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mémoires de la SMF 2e série 82, 1–104 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Rosensweig, R.E.: Ferrohydrodynamics. Courier Dover Publications, Mineola (1997)

    Google Scholar 

  55. Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995)

    Article  ADS  Google Scholar 

  56. Sternberg, P., Topaloglu, I.: On the global minimizers of the nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13, 155–169 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals: Physical Foundations. Springer, New York (1998)

    Book  MATH  Google Scholar 

  58. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  59. Tsebers, A.O., Maiorov, M.M.: Magnetostatic instabilities in plane layers of magnetizable liquids. Magnetohydrodynamics 16, 21–27 (1980)

    MATH  Google Scholar 

  60. Uhlenbeck, G.E.: Summarizing remarks. In: Bak, T.A. (ed.) Statistical Mechanics: Foundations and Applications: Proceedings of the I.U.P.A.P. Meeting, Copenhagen, 1966, New York, NY. W. A. Benjamin, Inc. (1967)

  61. von Weizsäcker, C.F.: Zur Theorie der Kernmassen. Z. für Phys. A 96, 431–458 (1935)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF via grant DMS-1614948. The authors wish to acknowledge valuable discussions with A. Bernoff, V. Julin, and M. Novaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill B. Muratov.

Additional information

Communicated by L. Caffarelli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, C.B., Simon, T.M. A Nonlocal Isoperimetric Problem with Dipolar Repulsion. Commun. Math. Phys. 372, 1059–1115 (2019). https://doi.org/10.1007/s00220-019-03455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03455-y

Navigation