Skip to main content
Log in

Proof of Taylor’s Conjecture on Magnetic Helicity Conservation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the mathematical version of Taylor’s conjecture which says that in 3D MHD, magnetic helicity is conserved in the ideal limit in bounded, simply connected, perfectly conducting domains. When the domain is multiply connected, magnetic helicity depends on the vector potential of the magnetic field. In that setting we show that magnetic helicity is conserved for a large and natural class of vector potentials but not in general for all vector potentials. As an analogue of Taylor’s conjecture in 2D, we show that mean square magnetic potential is conserved in the ideal limit, even in multiply connected domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluie, H.: Hydrodynamic and magnetohydrodynamic turbulence: invariants, cascades, and locality. Ph.D. thesis, Johns Hopkins University (2009)

  2. Aluie, H.: Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 19, 21 (2017)

    Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Berger, M.A.: Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30(1–2), 79–104 (1984)

    ADS  Google Scholar 

  5. Berger, M.A., Field, G.B.: The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148 (1984)

    ADS  MathSciNet  Google Scholar 

  6. Borchers, W., Sohr, H.: On the equations \({\rm rot}\,{ v}={ g}\) and \({\rm div}\,{ u}=f\) with zero boundary conditions. Hokkaido Math. J. 19(1), 67–87 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Bronzi, A.C., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Wild solutions for 2D incompressible ideal flow with passive tracer. Commun. Math. Sci. 13(5), 1333–1343 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Brown, M., Canfield, R.C., Pevtsov, A.A.: Magnetic Helicity in Space and Laboratory Plasmas, Geophysical Monograph Series, vol. 111. AGU (1999)

  9. Buckmaster, T., De Lellis, C., Székelyhidi, Jr, L., Vicol, V.: Onsager’s conjecture for admissible weak solutions (2017). arXiv:1701.08678

  10. Caflisch, R.E., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Cantarella, J., DeTurck, D., Gluck, H.: Vector calculus and the topology of domains in 3-space. Am. Math. Mon. 109(5), 409–442 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Chemin, J.-Y., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math. 286, 1–31 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Cheskidov, A., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Shvydkoy, R.: Energy conservation in two-dimensional incompressible ideal fluids. Commun. Math. Phys. 348(1), 129–143 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(3), 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Constantin, P., Ignatova, M., Nguyen, H.: Inviscid limit for SQG in bounded domains (2018). arXiv:1806.02393

    MathSciNet  MATH  Google Scholar 

  17. Dallas, V., Alexakis, A.: The signature of initial conditions on magnetohydrodynamic turbulence. Astrophys. J. Lett. 788(2), 4 (2014)

    Google Scholar 

  18. Díaz, J.I., Lerena, M.B.: On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics. Math. Models Methods Appl. Sci. 12(10), 1401–1419 (2002)

    MathSciNet  MATH  Google Scholar 

  19. de la Rasilla Dominguez, J.M.: Etude des équations de la magnétohydrodynamique stationnaires et de leur approximation par éléments finis. Ph.D. thesis, Université de Paris VI (1982)

  20. Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal. 46, 241–279 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Eyink, G.L.: Dissipative anomalies in singular Euler flows. Phys. D 237(14–17), 1956–1968 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Faraco, D., Lindberg, S.: Magnetic helicity and subsolutions in ideal MHD (2018). arXiv:1801.04896v2

  23. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Act Math. 129(3–4), 137–193 (1972)

    MATH  Google Scholar 

  24. Fefferman, C.L., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267(4), 1035–1056 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Fefferman, C.L., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch. Ration. Mech. Anal. 223(2), 677–691 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Finn, J.M., Antonsen, T.M.: Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Controlled Fusion 9(3), 111–126 (1985)

    Google Scholar 

  27. Foiaş, C., Temam, R.: Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(1), 28–63 (1978)

    MathSciNet  MATH  Google Scholar 

  28. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Fundamental Directions in Mathematical Fluid Mechanics. Adv. Math. Fluid Mech., pp. 1–70 . Birkhäuser, Basel (2000)

  29. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Springer Monographs in Mathematics. Steady-state problems. Springer, New York (2011)

  30. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)

  31. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. In: Springer Series in Computational Mathematics, vol. 5. Theory and algorithms. Springer, Berlin (1986)

    MATH  Google Scholar 

  32. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 63. Springer, Cham (2016)

    MATH  Google Scholar 

  33. Isett, P.: A Proof of Onsager’s conjecture (2016). arXiv:1608.08301

  34. Kang, E., Lee, J.: Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics. Nonlinearity 20(11), 2681–2689 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Kherief, K.: Quelques propriétés des équations de la magnétohydrodynamique stationnaires et d’évolution. Ph.D. thesis, Université de Paris VII (1984)

  36. Kozono, H., Yanagisawa, T.: \(L^r\)-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58(4), 1853–1920 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Li, J., Tan, W., Yin, Z.: Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces. Adv. Math. 317, 786–798 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Linkmann, M.F., Berera, A., McComb, W.D., McKay, M.E.: Nonuniversality and finite dissipation in decaying magnetohydrodynamic turbulence. Phys. Rev. Lett. 114(23), 235001 (2015)

    ADS  Google Scholar 

  39. Miao, C., Yuan, B.: Well-posedness of the ideal MHD system in critical Besov spaces. Methods Appl. Anal. 13(1), 89–106 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Mininni, P.D., Pouquet, A.: Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 80(2), 025401 (2009)

    ADS  Google Scholar 

  41. Morrey Jr., C.B.: Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer, New York (1966)

  42. Nečas, J.: Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics. Springer, Heidelberg (2012). Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader

    MATH  Google Scholar 

  43. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6 (1949). No. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), pp. 279–287

  44. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The three-dimensional Navier–Stokes equations. In: Cambridge Studies in Advanced Mathematics, vol. 157. Classical theory. Cambridge University Press, Cambridge (2016)

  45. Roubíček, T.: Nonlinear partial differential equations with applications, 2nd edn. In: International Series of Numerical Mathematics, vol. 153. Birkhäuser/Springer Basel AG, Basel (2013)

  46. Schmidt, P.G.: On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74(2), 318–335 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Secchi, P.: On the equations of ideal incompressible magnetohydrodynamics. Rend. Sem. Mat. Univ. Padova 90, 103–119 (1993)

    MathSciNet  MATH  Google Scholar 

  48. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974)

    ADS  Google Scholar 

  50. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)

    ADS  Google Scholar 

  51. Temam, R.: Navier–Stokes equations, revised ed.. In: Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam-New York (1979)

  52. Wang, S., Wang, B., Liu, C., Wang, N.: Boundary layer problem and zero viscosity-diffusion limit of the incompressible magnetohydrodynamic system with no-slip boundary conditions. J. Differ. Equ. 263(8), 4723–4749 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Wu, J.: Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math. 73, 251–265 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Wu, Z., Wang, S.: Zero viscosity and diffusion vanishing limit of the incompressible magnetohydrodynamic system with perfectly conducting wall. Nonlinear Anal. Real World Appl. 24, 50–60 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Xiao, Y., Xin, Z., Wu, J.: Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J. Funct. Anal. 257(11), 3375–3394 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Yoshida, Z., Giga, Y.: Remarks on spectra of operator rot. Math. Z. 204(2), 235–245 (1990)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, J.: The inviscid and non-resistive limit in the Cauchy problem for 3-D nonhomogeneous incompressible magneto-hydrodynamics. Acta Math. Sci. Ser. B (Engl. Ed.) 31(3), 882–896 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Hussein Aluie for making for making us aware of his very interesting related work on magnetohydrodynamic turbulence.We also thank the anonymous referee for making us aware of the related work done in [13,16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Faraco.

Additional information

Communicated by C. De Lellis.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Faraco was partially supported by ICMAT Severo Ochoa Projects SEV-2011-0087 and SEV-2015-556, the Grants MTM2014-57769-P-1 and MTM2017-85934-P-1 (Spain) and the ERC Grant 307179-GFTIPFD. Sauli Lindberg was supported by the ERC Grant 307179-GFTIPFD and by the AtMath Collaboration at the University of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraco, D., Lindberg, S. Proof of Taylor’s Conjecture on Magnetic Helicity Conservation. Commun. Math. Phys. 373, 707–738 (2020). https://doi.org/10.1007/s00220-019-03422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03422-7

Navigation