Skip to main content
Log in

Sandpiles on the Square Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice \({\mathbb{Z}^2}\) . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus \({\left(\mathbb{Z}/m\mathbb{Z}\right)^2}\) . The techniques use analysis of the space of functions on \({\mathbb{Z}^2}\) which are harmonic modulo 1. In the course of our arguments, we characterize the harmonic modulo 1 functions in \({\ell^p(\mathbb{Z}^2)}\) as linear combinations of certain discrete derivatives of Green’s functions, extending a result of Schmidt and Verbitskiy (Commun Math Phys 292(3):721–759, 2009. arXiv:0901.3124 [math.DS]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization, 4h edn. Wiley, Hoboken, NJ (2016)

  2. Athreya S.R., Járai A.A.: Infinite volume limit for the stationary distribution of abelian sandpile models. Commun. Math. Phys. 249(1), 197–213 (2004). https://doi.org/10.1007/s00220-004-1080-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987). https://doi.org/10.1103/PhysRevLett.59.381

    Article  ADS  Google Scholar 

  4. Bak P., Tang C., Wiesenfeld K.: Self-organized criticality.. Phys. Rev. A (3) 38(1), 364–374 (1988). https://doi.org/10.1103/PhysRevA.38.364

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Baker M., Shokrieh F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Combin. Theory Ser. A 120(1), 164–182 (2013) arXiv:1107.1313 [math.CO]

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhupatiraju, S., Hanson, J., Járai, A.A.: Inequalities for critical exponents in d-dimensional sandpiles. Electron. J. Probab. 22 (2017) ArXiv e-prints, arXiv:1602.06475 [math.PR]

  7. Bond B., Levine L.: Abelian networks I. Foundations and examples. SIAM J. Discrete Math. 30(2), 856–874 (2016) arXiv:1309.3445 [cs.FL]

    Article  MathSciNet  MATH  Google Scholar 

  8. Cairns, H.: Some halting problems for abelian sandpiles are undecidable in dimension three. ArXiv e-prints (2015). arXiv:1508.00161 [math.CO]

  9. Chung F., Ellis R.B.: A chip-firing game and Dirichlet eigenvalues. Discrete Math. 257(2-3), 341–355 (2002). https://doi.org/10.1016/S0012-365X(02)00434-X. Kleitman and combinatorics: a celebration (Cambridge, MA, 1999)

  10. Dhar D., Ruelle P., Sen S., Verma D.-N.: Algebraic aspects of abelian sandpile models. J. Phys. A 28(4), 805–831 (1995) arXiv:cond-mat/9408020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett 64(14), 1613–1616 (1990). https://doi.org/10.1103/PhysRevLett.64.1613

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dhar D.: The abelian sandpile and related models. Physica A: Statistical Mechanics and its Applications 263(1), 4–25 (1999) arXiv:cond-mat/9808047

    Article  ADS  Google Scholar 

  13. Diaconis, P.: Group representations in probability and statistics, volume 11 of Institute of Mathematical Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, CA (1988)

  14. Diaconis P., Graham R.L., Morrison J.A.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures Algorithms 1(1), 51–72 (1990). https://doi.org/10.1002/rsa.3240010105

    Article  MathSciNet  MATH  Google Scholar 

  15. Diaconis P., Shahshahani M.: Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18(1), 208–218 (1987). https://doi.org/10.1137/0518016

    Article  MathSciNet  MATH  Google Scholar 

  16. Fey A., Levine L., Peres Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138(1-3), 143–159 (2010) arXiv:0901.3805 [math.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fey A., Levine L., Wilson D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104, 145703 (2010) arXiv:0912.3206 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  18. Fey A., Meester R., Redig F.: Stabilizability and percolation in the infinite volume sandpile model. Ann. Probab. 37(2), 654–675 (2009) arXiv:0710.0939 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  19. Fey-den Boer A., Redig F.: Organized versus self-organized criticality in the abelian sandpile model. Markov Process. Related Fields 11(3), 425–442 (2005) arXiv:math-ph/0510060

    MathSciNet  MATH  Google Scholar 

  20. Fukai Y., Uchiyama K.: Potential kernel for two-dimensional random walk. Ann. Probab. 24(4), 1979–1992 (1996). https://doi.org/10.1214/aop/1041903213

    Article  MathSciNet  MATH  Google Scholar 

  21. Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In: In and out of equilibrium. 2, volume 60 of Progr. Probab. Birkhäuser, Basel, pp. 331–364 (2008). arXiv:0801.3306 [math.CO]

  22. Hough, B.: Mixing and cut-off in cycle walks. Electron. J. Probab. 22 (2017) ArXiv e-prints, arXiv:1512.00571 [math.NT]

  23. Iwaniec, H., Kowalski, E.: Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, (2004). https://doi.org/10.1090/coll/053

  24. Járai A.A., Redig F.: Infinite volume limit of the abelian sandpile model in dimensions d ≥ 3. Probab. Theory Related Fields 141(1-2), 181–212 (2008) arXiv:math/0408060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Járai Antal A., Redig F., Saada E.: Approaching criticality via the zero dissipation limit in the abelian avalanche model. J. Stat. Phys. 159(6), 1369–1407 (2015) arXiv:0906.3128 [math.PR]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jerison, D.C., Levine, L., Pike, J.: Mixing time and eigenvalues of the abelian sandpile Markov chain. ArXiv e-prints, (November 2015). arXiv:1511.00666 [math.PR]

  27. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python, (2001). [Online; Accessed 13 Feb 2017]

  28. Kozma G., Schreiber E.: An asymptotic expansion for the discrete harmonic potential. Electron. J. Probab. 9(1), 1–17 (2004) arXiv:math/0212156

    Article  MathSciNet  MATH  Google Scholar 

  29. Levine L.: Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle. Commun. Math. Phys. 335(2), 1003–1017 (2015) arXiv:1402.3283 [math.PR]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Levine L., Murugan M., Peres Y., Ugurcan Baris E.: The divisible sandpile at critical density. Ann. Henri Poincaré 17(7), 1677–1711 (2016) arXiv:1501.07258 [math.PR]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Maes C., Redig F., Saada E.: The infinite volume limit of dissipative abelian sandpiles. Commun. Math. Phys. 244(2), 395–417 (2004). https://doi.org/10.1007/s00220-003-1000-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Meester R., Quant C.: Connections between ‘self-organised’ and ‘classical’ criticality. Markov Process. Related Fields 11(2), 355–370 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Montgomery, H.L.: Ten lectures on the interface between analytic number theory and harmonic analysis, volume 84 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (1994). https://doi.org/10.1090/cbms/084

  34. Pegden W., Smart Charles K.: Convergence of the Abelian sandpile. Duke Math. J. 162(4), 627–642 (2013) arXiv:1105.0111 [math.AP]

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmidt K., Verbitskiy E.: Abelian sandpiles and the harmonic model. Commun. Math. Phys. 292(3), 721–759 (2009) arXiv:0901.3124 [math.DS]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sokolov A., Melatos A., Kieu T., Webster R.: Memory on multiple time-scales in an abelian sandpile. Physica A Stat. Mech. Appl. 428, 295–301 (2015). https://doi.org/10.1016/j.physa.2015.02.001

    Article  ADS  Google Scholar 

  37. Michael Steele, J.: An introduction to the art of mathematical inequalities. In: The Cauchy-Schwarz Master Class. MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge (2004). https://doi.org/10.1016/10.1017/CBO9780511817106.

  38. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. The Clarendon Press, Oxford University Press, New York, 2nd edn, (1986). Edited and with a preface by D. R. Heath-Brown

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Jerison.

Additional information

Communicated by H. Duminil-Copin

This material is based upon work supported by the National Science Foundation under Agreements No. DMS-1128155, http://www.nsf.gov/awardsearch/showAward?AWD_ID=1455272DMS-1455272, DMS-1712682, and DMS-1802336. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hough, R.D., Jerison, D.C. & Levine, L. Sandpiles on the Square Lattice. Commun. Math. Phys. 367, 33–87 (2019). https://doi.org/10.1007/s00220-019-03408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03408-5

Navigation