Advertisement

Communications in Mathematical Physics

, Volume 367, Issue 2, pp 483–516 | Cite as

A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase

  • Sunil ChhitaEmail author
  • Fabio Lucio Toninelli
Open Access
Article

Abstract

Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian \({H_\rho}\) of the speed of growth \({v(\rho)}\) as a function of the average slope \({\rho}\) satisfies \({{\rm det} H_\rho > 0}\) (“isotropic KPZ class”) or \({{\rm det} H_\rho \le 0}\) (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when \({v(\cdot)}\) is not differentiable, so that \({H_\rho}\) is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of \({\mathbb{Z}^2}\) , with 2-periodic weights. If \({\rho\ne0}\) , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that \({{\rm det} H_\rho < 0}\) : the model belongs to the AKPZ class. When \({\rho=0}\) , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, \({v(\cdot)}\) is not differentiable at \({\rho=0}\) and we extract the singularity of the eigenvalues of \({H_\rho}\) for \({\rho\sim 0}\) .

Notes

Acknowledgements

We are grateful to Patrik Ferrari and Sanjay Ramassamy for enlightening discussions. We would also like to thank the referee for their careful reading of ourmanuscript. F.T. was partially supported by the CNRS PICS grant “Interfaces aléatoires discrètes et dynamiques de Glauber”, by the ANR-15-CE40-0020-03 Grant LSD and by Labex MiLyon (ANR-10-LABX-0070).

References

  1. 1.
    Barabási A.L., Stanley H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Borodin A., Ferrari P.L.: Anisotropic growth of random surfaces in 2 + 1 dimensions. Commun. Math. Phys. 325, 603–684 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandenberger R., Wayne C.E.: Decay of correlations in surface models. J. Stat. Phys. 27(3), 425–440 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bricmont J., Fontaine J.-R., Lebowitz J.L.: Surface tension, percolation, and roughening. J. Stat. Phys. 29(2), 193–203 (1982)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chhita, S., Ferrari, P.L., Toninelli, F.L.: Speed and fluctuations for some driven dimer models. to appear on Ann. Inst. Henri Poincaré D, (2017). arXiv preprint arXiv:1705.07641
  6. 6.
    Chhita S., Johansson K.: Domino statistics of the two-periodic Aztec diamond. Adv. Math. 294, 37–149 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chhita S., Ferrari P.: A combinatorial identity for the speed of growth in an anisotropic KPZ model. Ann. Inst. Henri Poincaré D 4(4), 453–477 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciucu M.: A complementation theorem for perfect matchings of graphs having a cellular completion. J. Combin. Theory Ser. A 81(1), 34–68 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl. 01, 1130001 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dobrushin R.L.: Gibbs state describing coexistence of phases for a three-dimensional ising model. Theory Prob. Appl. 17(4), 582–600 (1973)CrossRefzbMATHGoogle Scholar
  11. 11.
    Duits, M., Kuijlaars, A.B.J.: The two periodic Aztec diamond and matrix valued orthogonal polynomials (2017). arXiv preprint arXiv:1712.05636
  12. 12.
    Elkies N., Kuperberg G., Larsen M., Propp J.: Alternating-sign matrices and domino tilings. J. Algebraic Combin. 1, 111–132, 219–234 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ferrari P.L., Spohn H.: Random growth models. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory, pp. 782–801. Oxford University Press, Oxford (2011)Google Scholar
  14. 14.
    Goncharov A.B., Kenyon R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4) 46(5), 747–813 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gordon W.B.: On the diffeomorphisms of Euclidean space. Am. Math. Monthly 79(7), 755–759 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gu, Y., Ryzhik, L., Zeitouni, O.: The Edwards–Wilkinson limit of the random heat equation in dimensions three and higher (2017). arXiv preprint arXiv:1710.00344
  17. 17.
    Hadamard J.: Sur les transformations ponctuelles. Bull. Soc. Math. France 34, 71–84 (1906)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hairer M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Halpin-Healy Timothy: Extremal paths, the stochastic heat equation, and the three-dimensional Kardar–Parisi–Zhang universality class. Phys. Rev. E 88(4), 042118 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Halpin-Healy T., Assdah A.: On the kinetic roughening of vicinal surfaces. Phys. Rev. A 46(6), 3527 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    Kardar M., Parisi G., Zhang Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
  23. 23.
    Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Krug, J., Spohn, H.: Kinetic roughening of growing surfaces. In: Godrèche, C. (ed.), Solids Far from Equilibrium, Collection Aléa-Saclay: Monographs and Texts in Statistical Physics, vol. 1 (1992)Google Scholar
  26. 26.
    Laslier B., Toninelli F.L.: Lozenge tilings, Glauber dynamics and macroscopic shape. Commun. Math. Phys. 338(3), 1287–1326 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Magnen, J., Unterberger, J.: Diffusive limit for 3-dimensional KPZ equation: the Cole–Hopf case (2017). arXiv preprint arXiv:1702.03122
  28. 28.
    Propp J.: Generalized domino-shuffling. Theoret. Comput. Sci. 303, 267–301 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Quastel J., Spohn H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Spohn H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  31. 31.
    Tang L.-H., Forrest B.M., Wolf D.E.: Kinetic surface roughening. II. Hypercube stacking models. Phys. Rev. A 45, 7162–7169 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Toninelli, F.L.: (2+ 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth (2018). arXiv preprint arXiv:1711.05571, to appear on the Proceedings of the ICM
  33. 33.
    Toninelli F.L.: A (2 + 1)-dimensional growth process with explicit stationary measures. Ann. Prob. 45(5), 2899–2940 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wolf D.E.: Kinetic roughening of vicinal surfaces. Phys. Rev. Lett. 67, 1783–1786 (1991)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.UMR 5208, CNRS, Institut Camille Jordan, Univ LyonUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations