Skip to main content
Log in

On the First Critical Field in the Three Dimensional Ginzburg–Landau Model of Superconductivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Ginzburg–Landau model is a phenomenological description of superconductivity. A crucial feature of type-II superconductors is the occurrence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. In this paper we estimate this value, when the Ginzburg–Landau parameter is large, and we characterize the behavior of the Meissner solution, the unique vortexless configuration that globally minimizes the Ginzburg–Landau energy below the first critical field. In addition, we show that beyond this value, for a certain range of the strength of the applied field, there exists a unique Meissner-type solution that locally minimizes the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama S., Bronsard L., Montero J.A.: On the Ginzburg–Landau model of a super-conducting ball in a uniform field. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(2), 237–267 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alberti G., Baldo S., Orlandi G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5(3), 275–311 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bethuel F., Brezis H., Orlandi G.: Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186(2), 432–520 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardeen J., Cooper L.N., Schrieffer J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Baldo S., Jerrard R.L., Orlandi G., Soner H.M.: Convergence of Ginzburg–Landau functionals in three-dimensional superconductivity. Arch. Ration. Mech. Anal. 205(3), 699–752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baldo S., Jerrard R.L., Orlandi G., Soner H.M.: Vortex density models for superconductivity and superfluidity. Comm. Math. Phys. 318(1), 131–171 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bethuel F., Orlandi G., Smets D.: Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc. (JEMS) 6(1), 17–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiron D.: Boundary problems for the Ginzburg–Landau equation. Commun. Contemp. Math. 7(5), 597–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Contreras A.: On the first critical field in Ginzburg–Landau theory for thin shells and manifolds. Arch. Ration. Mech. Anal. 200(2), 563–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Gennes P.G.: Superconductivity of Metals and Alloys. Advanced book classics, Perseus, Cambridge, MA (1999)

    MATH  Google Scholar 

  12. Fournais S., Helffer B.: Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser Boston, Inc., Boston, MA (2010)

    MATH  Google Scholar 

  13. Fournais S., Kachmar A.: The ground state energy of the three dimensional Ginzburg–Landau functional Part I: Bulk regime. Comm. Partial Differential Equations 38(2), 339–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fournais S., Kachmar A., Persson M.: The ground state energy of the three dimensional Ginzburg–Landau functional. Part II: Surface regime. J. Math. Pures Appl. (9) 99(3), 343–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20 (1950), 1064–1082. English translation in: Collected papers of L.D.Landau, Edited by D. Ter. Haar, Pergamon Press, Oxford 1965, pp. 546–568

  16. Giorgi T., Phillips D.: The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model. SIAM J. Math. Anal. 30(2), 341–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jerrard R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAMJ.Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerrard R., Montero A., Sternberg P.: Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249(3), 549–577 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kozono H., Sohr H.: New a priori estimates for the Stokes equations in exterior domains. Indiana Univ. Math. J. 40(1), 1–27 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. London F.: Superfluids, Structure of matter series. Wiley, New York (1950)

    Google Scholar 

  21. Lin F.-H., Rivière T.: A quantization property for static Ginzburg–Landau vortices. Comm. Pure Appl. Math. 54(2), 206–228 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin F., Rivière T.: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. (JEMS) 1(3), 237–311 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rivière, T.: Line vortices in the U(1)-Higgs model, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 77–167

  24. Román, C.: Three dimensional vortex approximation construction and \({\varepsilon}\)-level estimates for the Ginzburg–Landau functional, Arch. Ration. Mech. Anal. 231(3), 1531–1614 (2019). https://doi.org/10.1007/s00205-018-1304-7

  25. Serfaty S.: Local minimizers for the Ginzburg–Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1(2), 213–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serfaty S.: Stable configurations in superconductivity: uniqueness, multiplicity, and vortex-nucleation. Arch. Ration. Mech. Anal. 149(4), 329–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sandier E., Serfaty S.: Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 119–145 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sandier E., Serfaty S.: Ginzburg–Landau minimizers near the first critical field have bounded vorticity. Calc. Var. Partial Differential Equations 17(1), 17–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sandier E., Serfaty S.: Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston, Inc., Boston, MA (2007)

    MATH  Google Scholar 

  30. Sandier E., Shafrir I.: Small energy Ginzburg–Landau minimizers in \({{\mathbb{R}}^3}\). J. Funct. Anal. 272(9), 3946–3964 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tinkham M.: Introduction to superconductivity, Second. McGraw-Hill, New York (1996)

    Google Scholar 

  32. Xiang X.: On the shape of Meissner solutions to a limiting form of Ginzburg–Landau systems. Arch. Ration. Mech. Anal. 222(3), 1601–1640 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful to my former Ph.D. advisors Etienne Sandier and Sylvia Serfaty for suggesting the problem and for useful comments. I also thank the anonymous referees for helpful comments. Most of this work was done while I was a Ph.D. student at the Jacques-Louis Lions Laboratory of the Pierre and Marie Curie University, supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098, LabEx SMP). Part of this work was supported by the German Science Foundation DFG in the context of the Emmy Noether junior research group BE 5922/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Román.

Ethics declarations

The author declares that they have no conflict of interest.

Additional information

Communicated by R. Seiringer

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román, C. On the First Critical Field in the Three Dimensional Ginzburg–Landau Model of Superconductivity. Commun. Math. Phys. 367, 317–349 (2019). https://doi.org/10.1007/s00220-019-03306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03306-w

Navigation