Skip to main content
Log in

String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that the L-function of an elliptic curve defined over \({\mathbb{Q}}\) is given by the Mellin transform of a modular form of weight 2. Does that modular form have anything to do with string theory? In this article, we address a question along this line for elliptic curves that have complex multiplication defined over number fields. So long as we use diagonal rational \({\mathcal{N}=(2,2)}\) superconformal field theories for the string-theory realizations of the elliptic curves, the weight-2 modular form turns out to be the Boltzmann-weighted (\({q^{L_0-c/24}}\)-weighted) sum of U(1) charges with \({Fe^{\pi i F}}\) insertion computed in the Ramond sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aspinwall P.S., Kallosh R.: Fixing all moduli for M-theory on K3xK3. JHEP 0510, 001 (2005) arXiv:hep-th/0506014

    Article  ADS  Google Scholar 

  2. DeWolfe O.: Enhanced symmetries in multiparameter flux vacua. JHEP 0510, 066 (2005) arXiv:hep-th/0506245

    ADS  MathSciNet  Google Scholar 

  3. Braun A.P., Kimura Y., Watari T.: The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K3 ×  K3 as a test case. JHEP 1404, 050 (2014) arXiv:1401.5908 [hep-th]

    Article  ADS  Google Scholar 

  4. Benjamin, N., Dyer, E., Fitzpatrick, A.L., Kachru, S.: Universal Bounds on Charged States in 2dCFT and 3d Gravity. JHEP 1608, 041. arXiv:1603.09745 [hep-th] and references therein (2016)

  5. DeWolfe O., Giryavets A., Kachru S., Taylor W.: Enumerating flux vacua with enhanced symmetries. JHEP 0502, 037 (2005) arXiv:hep-th/0411061

    Article  ADS  MathSciNet  Google Scholar 

  6. Faltings, G.: Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 no. 3, 349–366 (1983); ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27, Springer, New York (1986)

  7. Gross, B.H.: Arithmetic on Elliptic Curves with Complex Multiplication Lecture Notes in Mathematics, vol. 776. Springer (1980)

  8. Gukov S., Vafa C.: Rational conformal field theories and complex multiplication. Commun. Math. Phys. 246, 181 (2004) arXiv:hep-th/0203213

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hosono S., Lian B.H., Oguiso K., Yau S.T.: Classification of c = 2 rational conformal field theories via the Gauss product. Commun. Math. Phys. 241, 245 (2003) arXiv:hep-th/0211230

    Article  ADS  MATH  Google Scholar 

  10. Iwaniec, H.: Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, vol. 17. American Mathematical Society (1997)

  11. Kanno K., Watari T.: Revisiting arithmetic solutions to the W = 0 condition. Phys. Rev. D 96(10), 106001 (2017) arXiv:1705.05110 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. Kawai T., Yamada Y., Yang S.K.: Elliptic genera and N=2 superconformal field theory. Nucl. Phys. B 414, 191 (1994) arXiv:hep-th/9306096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, GTM 97. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  14. Springer (1994) Lang, S.: Algebraic Number Theory, GTM 110. Springer, Berlin (1994)

  15. Lang, S.: Elliptic Functions, GTM 112. Springer, Berlin (1987)

    Book  Google Scholar 

  16. Milne, J.S.: Lecture note Class Field Theory. http://www.jmilne.org/math/CourseNotes/cft.html

  17. Miyake T.: Modular Forms. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  18. Moore, G.W.: Arithmetic and attractors, arXiv:hep-th/9807087

  19. Moore, G.W.: Attractors and arithmetic, arXiv:hep-th/9807056

  20. Moore, G.W.: Strings and Arithmetic, arXiv:hep-th/0401049

  21. Moreland, G.: Class field theory for number fields and complex multiplication a lecture note for the REU program 2016 at U. Chicago, http://math.uchicago.edu/~may/REU2016/

  22. Neukirch J.: Algebraic Number Theory. Springer, Berlin (1992)

    MATH  Google Scholar 

  23. Paquette N.M., Persson D., Volpato R.: Monstrous BPS-algebras and the superstring origin of moonshine. Commun. Num. Theor. Phys. 10, 433 (2016) arXiv:1601.05412 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  24. Schimmrigk R.: Arithmetic of Calabi–Yau varieties and rational conformal field theory. J. Geom. Phys. 44, 555 (2003) arXiv:hep-th/0111226

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Schimmrigk R.: Aspects of conformal field theory from Calabi–Yau arithmetic. Fields Inst. Commun. 38, 233 (2003) arXiv:math/0209168 [math-ag]

    MathSciNet  MATH  Google Scholar 

  26. Schimmrigk R., Underwood S.: The Shimura–Taniyama conjecture and conformal field theory. J. Geom. Phys. 48, 169 (2003) arXiv:hep-th/0211284

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lynker M., Periwal V., Schimmrigk R.: Complex multiplication symmetry of black hole attractors. Nucl. Phys. B 667, 484 (2003) arXiv:hep-th/0303111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lynker M., Periwal V., Schimmrigk R.: Black hole attractor varieties and complex multiplication. Fields Inst. Commun. 38, 209 (2003) arXiv:math/0306135 [math-ag]

    MathSciNet  MATH  Google Scholar 

  29. Lynker M., Schimmrigk R., Stewart S.: Complex multiplication of exactly solvable Calabi–Yau varieties. Nucl. Phys. B 700, 463 (2004) arXiv:hep-th/0312319

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Lynker M., Schimmrigk R.: Geometric Kac–Moody modularity. J. Geom. Phys. 56, 843 (2006) arXiv:hep-th/0410189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Schimmrigk R.: Arithmetic spacetime geometry from string theory. Int. J. Mod. Phys. A 21, 6323 (2006) arXiv:hep-th/0510091

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Schimmrigk R.: The Langlands program and string modular K3 surfaces. Nucl. Phys. B 771, 143 (2007) arXiv:hep-th/0603234

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Schimmrigk R.: A Modularity test for elliptic mirror symmetry. Phys. Lett. B 655, 84 (2007) arXiv:0705.2427 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Schimmrigk R.: Emergent spacetime from modular motives. Commun. Math. Phys. 303, 1 (2011) arXiv:0812.4450 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. the arXiv:hep-th/0510091 article in [22].

  36. Serre J.P., Tate J.: Good reduction of Abelian varieties. Ann. Math. 88, 492–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Serre, J.P.: A Course in Arithmetic, GTM 7. Springer, Berlin (1973)

    Book  Google Scholar 

  38. Shimura G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami/Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  39. Shimura G.: On the zeta-function of an abelian variety with complex multiplication. Ann. Math. 94, 504–533 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shimura G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1998)

    Book  MATH  Google Scholar 

  41. Silverman, J.: The Arithmetic of Elliptic Curves, GTM 106. Springer, Berlin (1986)

    Book  Google Scholar 

  42. Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151. Springer, Berlin (1994)

    Book  Google Scholar 

  43. Wendland, K.: Moduli Spaces of Unitary Conformal Field Theories, Ph.D. thesis, Universität Bonn (2000)

  44. Chen, M.: Complex Multiplication, Rationality and Mirror Symmetry for Abelian Varieties and K3 Surfaces, Ph.D. thesis, Universität Bonn (2007)

Download references

Acknowledgements

We are grateful to T. Abe and K. Hori for discussion and useful comments. This work is supported by WPI Initiative, MEXT, Japan (SK, TW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizan Watari.

Additional information

Communicated by C. Schweigert

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, S., Watari, T. String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication. Commun. Math. Phys. 367, 89–126 (2019). https://doi.org/10.1007/s00220-019-03302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03302-0

Navigation