Skip to main content
Log in

Universality Results for Kinetically Constrained Spin Models in Two Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Kinetically constrained models (KCM) are reversible interacting particle systems on \({\mathbb{Z}^{d}}\) with continuous timeMarkov dynamics of Glauber type, which represent a natural stochastic (and non-monotone) counterpart of the family of cellular automata known as \({\mathcal{U}}\)-bootstrap percolation. KCM also display some of the peculiar features of the so-called “glassy dynamics”, and as such they are extensively used in the physics literature to model the liquid-glass transition, a major and longstanding open problem in condensed matter physics. We consider two-dimensional KCM with update rule \({\mathcal{U}}\), and focus on proving universality results for the mean infection time of the origin, in the same spirit as those recently established in the setting of \({\mathcal{U}}\)-bootstrap percolation. We first identify what we believe are the correct universality classes, which turn out to be different from those of \({\mathcal{U}}\)-bootstrap percolation. We then prove universal upper bounds on the mean infection time within each class, which we conjecture to be sharp up to logarithmic corrections. In certain cases, including all supercritical models, and the well-known Duarte model, our conjecture has recently been confirmed in Marêché et al. (Exact asymptotics for Duarte and supercritical rooted kinetically constrained models). In fact, in these cases our upper bound is sharp up to a constant factor in the exponent. For certain classes of update rules, it turns out that the infection time of the KCM diverges much faster than for the corresponding \({\mathcal{U}}\)-bootstrap process when the equilibrium density of infected sites goes to zero. This is due to the occurrence of energy barriers which determine the dominant behaviour for KCM, but which do not matter for the monotone bootstrap dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aldous D., Diaconis P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107(5-6), 945–975 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andersen H.C., Fredrickson G.H.: Kinetic Ising model of the glass transition. Phys. Rev. Lett. 53(13), 1244–1247 (1984)

    Article  ADS  Google Scholar 

  3. Asselah A., Dai Pra P.: Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Prob. 29(4), 1733–1754 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balister P., Bollobás B., Przykucki M.J., Smith P.: Subcritical \({\mathcal{U}}\)-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368, 7385–7411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality of two-dimensional critical cellular automata. In: Proceedings of the London Mathematical Society (2016, to appear). arXiv:1406.6680

  6. Bollobás B., Duminil-Copin H., Morris R., Smith P.: The sharp threshold for the Duarte model. Ann. Prob. 45, 4222–4272 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blondel O., Cancrini N., Martinelli F., Roberto C., Toninelli C.: Fredrickson-Andersen one spin facilitated model out of equilibrium. Markov Proc. Rel. Fields 19, 383–406 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bollobás B., Smith P., Uzzell A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Facilitated spin models: recent and new results, methods of contemporary mathematical statistical physics. Lecture Notes in Math., Vol. 1970, pp. 307–340. Springer, Berlin (2009)

  10. Cancrini N., Martinelli F., Roberto C., Toninelli C.: Kinetically constrained spin models. Prob. Theory Rel. Fields 140(3-4), 459–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cancrini N., Martinelli F., Schonmann R., Toninelli C.: Facilitated oriented spin models: some non equilibrium results. J. Stat. Phys. 138(6), 1109–1123 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chleboun P., Faggionato A., Martinelli F.: Mixing time and local exponential ergodicity of the East-like process in \({\mathbb{Z}^{d}}\). Ann. Fac. Sci. Toulouse Math. Sér 6 24(4), 717–743 (2015)

    Article  MATH  Google Scholar 

  13. Chleboun P., Faggionato A., Martinelli F.: Time scale separation and dynamic heterogeneity in the low temperature East model. Commun. Math. Phys. 328, 955–993 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chleboun P., Faggionato A., Martinelli F.: Relaxation to equilibrium of generalized East processes on \({\mathbb{Z}^{d}}\):Renormalisation group analysis and energy-entropy competition.Ann. Prob. 44(3), 1817–1863 (2016)

    Article  MATH  Google Scholar 

  15. Chung F., Diaconis P., Graham R.: Combinatorics for the East model. Adv. Appl. Math. 27(1), 192–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duarte J.A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A. 157(3), 1075–1079 (1989)

    Article  Google Scholar 

  17. Duminil-Copin H., van Enter A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Prob. 41, 1218–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duminil-Copin, H., van Enter, A.C.D., Hulshof, T.: Higher order corrections for anisotropic bootstrap percolation (2016). arXiv:1611.03294

  19. van Enter A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Faggionato A., Martinelli F., Roberto C., Toninelli C.: The East model: recent results and new progresses. Markov Proc. Rel. Fields 19, 407–458 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Faggionato A., Martinelli F., Roberto C., Toninelli C.: A ging through hierarchical coalescence in the East model. Commun. Math. Phys. 309, 459–495 (2012)

    Article  ADS  MATH  Google Scholar 

  22. Garrahan, J.P., Sollich, P., Toninelli, C.: Kinetically constrained models. In: Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford University Press, Oxford (2011)

  23. Jäckle J., Eisinger S.: A hierarchically constrained kinetic Ising model. Z. Phys. B: Condens. Matter 84(1), 115–124 (1991)

    Article  ADS  MATH  Google Scholar 

  24. Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. AmericanMathematical Society, Providence (2008)

    Book  Google Scholar 

  25. Liggett T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  26. Martinelli, F., Toninelli, C.: Towards a universality picture for the relaxation to equilibrium of kinetically constrained models. Ann. Prob. (2018, to appear). arXiv:1701.00107

  27. Marêché, L.,Martinelli, F.,Toninelli, C.: Exact asymptotics for Duarte and supercritical rooted kinetically constrained models. arXiv:1807.07519

  28. Mountford T.S.: Critical length for semi-oriented bootstrap percolation. Stoch. Proc. Appl. 56(2), 185–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morris R.: Bootstrap percolation, and other automata. Eur. J. Combin. 66, 250–263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pillai N.S., Smith A.: Mixing times for a constrained Ising process on the torus at low density. Ann. Prob. 45(2), 1003–1070 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ritort F., Sollich P.: Glassy dynamics of kinetically constrained models. Adv. Phys. 52(4), 219–342 (2003)

    Article  ADS  Google Scholar 

  32. Saloff-Coste, L., Bernard, P.: Lectures on finite Markov chains. In: Bernard, P. (ed.) Lecture Notes in Mathematics, vol.1665. Springer, Berlin (1997)

  33. Schonmann R.: On the behaviour of some cellular automata related to bootstrap percolation. Ann. Prob. 20, 174–193 (1992)

    Article  MATH  Google Scholar 

  34. Schonmann R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58, 1239–1244 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sollich P., Evans M.R.: Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain. Phys. Rev. Lett 83, 3238–3241 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the ERC Starting Grant 680275 “MALIG”, ANR-15-CE40-0020-01 and by the PRIN 20155PAWZB “Large Scale Random Structures”. RM is also partially supported by CNPq (Proc. 303275/2013-8) and by FAPERJ (Proc. 201.598/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Toninelli.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinelli, F., Morris, R. & Toninelli, C. Universality Results for Kinetically Constrained Spin Models in Two Dimensions. Commun. Math. Phys. 369, 761–809 (2019). https://doi.org/10.1007/s00220-018-3280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3280-z

Navigation