Skip to main content
Log in

Induced C*-Complexes in Metaplectic Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a symplectic manifold admitting a metaplectic structure and for a Kuiper map, we construct a complex of differential operators acting on exterior differential forms with values in the dual of Kostant’s symplectic spinor bundle. Defining a Hilbert C*-structure on this bundle for a suitable C*-algebra, we obtain an elliptic C*-complex in the sense of Mishchenko–Fomenko. Its cohomology groups appear to be finitely generated projective Hilbert C*-modules. The paper can serve as a guide for handling differential complexes and PDEs on Hilbert bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: Hodge theory on Cheeger spaces (2016). https://doi.org/10.1515/crelle-2015-0095, on-line published in 2016. ArXiv–preprint https://arxiv.org/abs/1307.5473

  2. Bakić D., Guljaš B.: Operators on Hilbert H *-modules. J. Oper. Theory 46(1), 123–137 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Birkhoff G., von Neumann J.: The logic of quantum mechanics. Ann. Math. (2) 37, 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bongioanni B., Torrea J.: Sobolev spaces associated to the harmonic oscillator. Proc. Indian Acad. Sci. Math. Sci. 116((3), 337–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Second edition. Mathematical Surveys and Monographs, vol. 67. American Mathematical Society, Providence (2000)

  6. Bruhat F.: Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France 84, 97–205 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahen M., Gutt S., La Fuente Gravy L., Rawnsley J.: On Mp c-structures and symplectic Dirac operators. J. Geom. Phys. 86, 434–466 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Connes A.: Noncommutative Geometry. Academic Press, Inc., San Diego (1994)

    MATH  Google Scholar 

  9. Dixmier J., Douady A.: Champs continus d’espaces hilbertiens et de C *-algébres. Bull. Soc. Math. France 91, 227–284 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dixmier J.: Les C *-algébres et leurs représentations. Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  11. Dubois-Violette M., Michor P.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20(2–3), 218–232 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fathizadeh, F., Gabriel, O.: On the Chern–Gauss–Bonnet theorem and conformally twisted spectral triples for C *-dynamical systems. SIGMA Symmetry Integrability Geom. Methods Appl. 12, paper No. 016. (2016)

  13. Folland G.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122. Princeton Univ. Press, Princeton (1989)

    Google Scholar 

  14. Fomenko A., Mishchenko A.: The index of elliptic operators over C *-algebras. Math. USSR-Izv. 15, 87–112 (1980)

    Article  MATH  Google Scholar 

  15. Forger M., Hess H.: Universal metaplectic structures and geometric quantization. Commun. Math. Phys. 64(3), 269–278 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Freed D., Lott J.: An index theorem in differential K-theory. Geom. Topol. 14(2), 903–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goodman R.: Analytic and entire vectors for representations of Lie groups. Trans. Am. Math. Soc. 143, 55–76 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grothendieck, A.: Produits tensoriels topologiques et Espaces nucléaires. Amer. Mat. Soc., Providence (1966)

  19. Habermann K.: The Dirac operator on symplectic spinors. Ann. Glob. Anal. Geom. 13(2), 155–168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Habermann K., Habermann L.: Introduction to Symplectic Dirac Operators. Lecture Notes in Mathematics 1887. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Hain, R.: The Hodge–de Rham theory of modular groups. In: Fernández, J.A. (ed.) Recent Advances in Hodge Theory. London Math. Soc. Lecture Note Ser., vol. 427, pp. 422–514. Cambridge University Press, Cambridge (2016)

  22. Henneaux M., Teitelboim C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  23. Herczeg, G., Waldron, A.: Contact geometry and Quantum mechanics. Phys. Lett. Sect. B Nucl. Elem. Particle High Energy Phys. 781, 312 –315 (2018). https://doi.org/10.1016/j.physletb.2018.04.008

  24. Hodge, W.: The Theory and Applications of Harmonic Integrals. 2nd edn. Cambridge, at the Univ. Press (1952)

  25. Illusie L.: Complexes quasi-acycliques directs de fibrés banachiques. C. R. Acad. Sci. Paris 260, 6499–6502 (1965)

    MathSciNet  MATH  Google Scholar 

  26. Keyl, M., Kiukas, J., Werner, R.: Schwartz operators. Rev. Math. Phys. 28(3):1630001 (2016)

  27. Kim J.: A splitting theorem for holomorphic Banach bundles. Math. Z. 263(1), 89–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirillov, A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004). ISBN 0-8218-3530-0

  29. Klein, F.: Über die Entwicklung der Mathematik im 19. Jahrhundert. Band 1, Springer, Berlin, 1926. Engl. transl. by M. Ackermann: Development of Mathematics in the 19th Century with Appendices “Kleinian Mathematics from an Advanced Standpoint” by R. Hermann, 1st edn. Math Sci Press, Brookline (1979)

  30. Knapp, A.: Representation Theory of Semisimple Groups. An Overview Based on Examples, Reprint of the 1986 original. Princeton Landmarks in Mathematics. Princeton Univ. Press, Princeton (2001)

  31. Kolář I., Michor P., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  32. Kostant, B.: Symplectic spinors. In: Symposia Mathematica, vol. XIV, pp. 139–152 (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973). Academic Press, London (1974)

  33. Krýsl S.: Classification of 1st order symplectic spinor operators over contact projective geometries. Differ. Geom. Appl. 26(5), 553–565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krýsl S.: Cohomology of the de Rham complex twisted by the oscillatory representation. Differ. Geom. Appl. 33(5), 290–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krýsl S.: Hodge theory for self-adjoint parametrix possessing complexes over C *-algebras. Ann. Glob. Anal. Geom. 47(4), 359–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krýsl S.: Elliptic complexes over C *-algebras of compact operators. J. Geom. Phys. 101, 27–37 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Krýsl, S.: Hodge Theory and Symplectic Spinors. Habilitation thesis, Faculty of Mathematics and Physics, Charles University, Prague (2016). http://msekce.mff.cuni.cz/~krysl/habil.pdf. Short version at ArXiv https://arxiv.org/abs/1708.02026

  38. Kuiper N.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  39. Larraín-Hubach, A.: K-theories for classes of infinite rank bundles. In: Ho, M.-H. (ed.) Analysis, Geometry and Quantum Field Theory. Contemp. Math., vol. 584, pp. 79–97. Amer. Math. Soc., Providence (2012)

  40. Lempert L.: On the cohomology groups of holomorphic Banach bundles. Trans. Am. Math. Soc. 361(8), 4013–4025 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li P.: Cauchy–Schwarz-type inequalities on Kähler manifolds–II. J. Geom. Phys. 99, 256–262 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ludwig G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien. Zeitschrifft für Physik 181(3), 233–260 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Maeda, Y., Rosenberg, S.: Traces and Characteristic Classes in Infinite Dimensions, Geometry and Analysis on Manifolds. Progr. Math., vol. 308, pp. 413–435. Birkhäuser/Springer, Cham (2015)

  44. Magajna B.: Hilbert C *-modules in which all closed submodules are complemented. Proc. Am. Math. Soc. 125(3), 849–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mathai, V., Melrose, R., Singer, I.: The index of projective families of elliptic operators: the decomposable case. In: Dai, X., et al. (eds.) From Probability to Geometry II (Volume in honor of the 60th birthday of Jean-Michel Bismut), vol. 328, pp. 255–296. Paris SMF, Astérisque (2009)

  46. Maurin, K.: The Riemann Legacy. Riemannian Ideas in Mathematics and Physics. Mathematics and its Applications, vol. 417. Kluwer Academic Publishers Group, Dordrecht (1997)

  47. Michor, P.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)

  48. Mishchenko A.: The theory of elliptic operators over C *-algebras. Dokl. Akad. Nauk SSSR 239(6), 1289–1291 (1978)

    MathSciNet  Google Scholar 

  49. Neeb K.: On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259(11), 2814–2855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nekovář, J., Scholl, A.: Introduction to plectic cohomology. In: Jiang, D., Shahidi, F., Soudry, D. (eds.) Advances in the Theory of Automorphic Forms and Their L-Functions. Contemp. Math., vol. 664, pp. 321–337. Amer. Math. Soc., Providence RI (2016)

  51. von Neumann J.: Zur Operathorenmethode in der klassischen Mechanik. Ann. Math. (2) 33, 257–642 (1932)

    Google Scholar 

  52. Palais, R.: Seminar on the Atiyah–Singer Index Theorem (with contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay). Annals of Mathematics Studies, No. 57. Princeton Univ. Press, Princeton (1965)

  53. Paschke W.: Inner product modules over B *-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MathSciNet  MATH  Google Scholar 

  54. Raeburn, I., Williams, D.: Morita Equivalence and Continuous-Trace C *-Algebras. Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence (1998). ISBN 0-8218-0860-5

  55. Rieffel M.: Induced representations of C *-algebras. Adv. Math. 13(2), 176–257 (1973)

    Article  MATH  Google Scholar 

  56. Robinson, P., Rawnsley, J.: The metaplectic representation, Mp c-structures and geometric quantization. Mem. Am. Math. Soc. 410 (1989)

  57. Röhrl, H.: Über die Kohomologie berechenbarer Fréchet Garben. Comment. Math. Univ. Carolinae 10, 625–640 (1969)

  58. Rørdam, M., Larsen, F., Laustsen, N. J.: An Introduction to K-Theory for C *-Algebras. London Mathematical Society. Cambridge University Press, Cambridge (2000)

  59. Rosenberg, J.: Topology, C *-algebras, and string duality. CBMS Regional Conference Series in Mathematics, 111. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence (2009)

  60. Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002)

  61. Schick T.: L 2-index theorems, KK-theory, and connections. N. Y. J. Math. 11, 387–443 (2005)

    MATH  Google Scholar 

  62. Schmid, W., Vilonen, K.: Hodge theory and unitary representations. Representations of reductive groups. Progr. Math., vol. 312, pp. 443–453. Birkhäuser/Springer, Cham (2015)

  63. Schottenloher, M.: The unitary group and its strong topology. ArXiv–preprint https://arxiv.org/abs/1309.5891

  64. Shale D.: Linear symmetries of free boson fields. Trans. Am. Math. Soc. 103, 149–167 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  65. Solovyev (Solov’ëv), Y., Troitsky (Troickij), E.: C *-Algebras and Elliptic Operators in Differential Topology. Transl. of Mathem. Monographs, vol. 192. Amer. Math. Soc., Providence (2001)

  66. Troitsky E.: The index of equivariant elliptic operators over C *-algebras. Ann. Glob. Anal. Geom. 5(1), 3–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tsai C., Tseng L., Yau S.: Cohomology and Hodge theory on symplectic manifolds: III. J. Differ. Geom. 103(1), 83–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wallach, N.: Symplectic Geometry and Fourier Analysis. With an Appendix on Quantum Mechanics by Robert Hermann. Lie Groups: History, Frontiers and Applications, Vol. V. Math Sci Press, Brookline (1977)

  69. Warner, G.: Harmonic Analysis on Semi-simple Lie Groups I. Die Grundlehren der mathematischen Wissenschaften, Band 188. Springer, New York–Heidelberg, (1972)

  70. Weil A.: Sur certains groupes d’opérateurs unitaires. Acta Math. No. 111, 143–211 (1964)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svatopluk Krýsl.

Additional information

Communicated by C. Schweigert

The author thanks for financial supports from the founding No. 17-01171S granted by the Czech Science Foundation. We thank to the anonymous reviewer for his comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krýsl, S. Induced C*-Complexes in Metaplectic Geometry. Commun. Math. Phys. 365, 61–91 (2019). https://doi.org/10.1007/s00220-018-3275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3275-9

Navigation