Skip to main content
Log in

Six-Vertex Model and Non-linear Differential Equations. I: Spectral Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work we relate the spectral problem of the toroidal six-vertex model’s transfer matrix with the theory of integrable non-linear differential equations. More precisely, we establish an analogy between the Classical Inverse Scattering Method and previously proposed functional equations originating from the Yang–Baxter algebra. The latter equations are then regarded as an Auxiliary Linear Problem allowing us to show that the six-vertex model’s spectrum solves Riccati-type non-linear differential equations. Generating functions of conserved quantities are expressed in terms of determinants and we also discuss a relation between our Riccati equations and a stationary Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter R.J.: Eight vertex model in lattice statistics. Phys. Rev. Lett. 26, 832 (1971)

    Article  ADS  Google Scholar 

  2. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Dover Publications, Inc., Mineola, New York (2007)

    MATH  Google Scholar 

  3. Bazhanov V.V.: Trigonometric solution of triangle equations and classical lie algebras. Phys. Lett. B 159, 321–324 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bethe H.: Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der Linearen Atomkette. Zeitschrift für Physik 71, 205–226 (1931)

    Article  ADS  MATH  Google Scholar 

  5. Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory II. Q-operator and DDV equation. Commun. Math. Phys. 190(2), 247–278 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bazhanov V.V., Mangazeev V.V.: Eight-vertex model and non-stationary Lamé equation. J. Phys. A Math. Gen. 38(8), L145 (2005)

    Article  ADS  MATH  Google Scholar 

  7. Bazhanov V.V., Mangazeev V.V.: The eight-vertex model and Painlevé VI. J. Phys. A Math. Gen. 39(39), 12235 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Bazhanov V.V., Mangazeev V.V.: The eight-vertex model and painlevé vi equation ii: eigenvector results. J. Phys. A Math. Theor. 43(8), 085206 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Bazhanov V.V., Shadrikov A.G.: Trigonometric solutions of triangle equations—simple Lie superalgebras. Theor. Math. Phys. 73, 1303 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Dorey P., Dunning C., Tateo R.: The ODE/IM correspondence. J. Phys. A Math. Gen. 40(32), R205–R283 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. de Vega H.J.: Families of commuting transfer matrices and integrable models with disorder. Nucl. Phys. B 240(4), 495–513 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. Frobenius G.: Über das Pfaffsche problem. Journal fr die reine und angewandte Mathematik 82, 230–315 (1877)

    MathSciNet  Google Scholar 

  13. Galleas W.: Functional relations from the Yang–Baxter algebra: Eigenvalues of the XXZ model with non-diagonal twisted and open boundary conditions. Nucl. Phys. B 790(3), 524–542 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Galleas W.: Functional relations for the six-vertex model with domain wall boundary conditions. J. Stat. Mech. 06, P06008 (2010)

    Google Scholar 

  15. Galleas W.: A new representation for the partition function of the six-vertex model with domain wall boundaries. J. Stat. Mech. 01, P01013 (2011)

    MathSciNet  Google Scholar 

  16. Galleas W.: Multiple integral representation for the trigonometric SOS model with domain wall boundaries. Nucl. Phys. B 858(1), 117–141 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Galleas W.: Refined functional relations for the elliptic SOS model. Nucl. Phys. B 867, 855–871 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Galleas W.: Scalar product of Bethe vectors from functional equations. Commun. Math. Phys. 329(1), 141–167 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Galleas W.: Twisted Heisenberg chain and the six-vertex model with DWBC. J. Stat. Mech. 11, P11028 (2014)

    Article  MathSciNet  Google Scholar 

  20. Galleas W.: Partial differential equations from integrable vertex models. J. Math. Phys. 56, 023504 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Galleas, W.: Continuous representations of scalar products of Bethe vectors. J. Math. Phys. 58 (2017). arXiv:1607.08524 [math-ph], (2016)

  22. Galleas W.: New differential equations in the six-vertex model. J. Stat. Mech. 2016(3), 33106–33118 (2016)

    Article  MathSciNet  Google Scholar 

  23. Galleas, W.: On the elliptic \({\mathfrak{gl}_2 }\) solid-on-solid model: functional relations and determinants (2016). arXiv:1606.06144 [math-ph]

  24. Galleas W.: Partition function of the elliptic solid-on-solid model as a single determinant. Phys. Rev. E 94, 010102 (2016)

    Article  ADS  Google Scholar 

  25. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  ADS  MATH  Google Scholar 

  26. Galleas W., Lamers J.: Reflection algebra and functional equations. Nucl. Phys. B 886(0), 1003–1028 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Galleas, W., Lamers, J.: Differential approach to on-shell scalar products in six-vertex models (2015). arXiv:1505.06870 [math-ph]

  28. Galleas W., Martins M.J.: New R-matrices from representations of braid-monoid algebras based on superalgebras. Nucl. Phys. B 732, 444–462 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ge M.L., Wu Y.S., Xue K.: Explicit trigonometric Yang-Baxterization. Int. J. Mod. Phys. A 6, 3735 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jimbo M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 102, 537–547 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Korepin V.E., Bogoliubov N.M., Izergin A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, (1993)

  32. Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser. 5(39), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  33. Korepin V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kirillov A.N., Reshetikhin N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin: I. The ground state and the excitation spectrum. J . Phys. A Math. Gen. 20, 1565–1585 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. Kulish P.P., Reshetikhin N.Y., Sklyanin E.K.: Yang–Baxter equation and representation theory: I. Lett. Math. Phys. 5, 393–403 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kramers H.A., Wannier G.H.: Statistics of the two-dimensional ferromagnet part I. Phys. Rev. 60(3), 252 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Kramers H.A., Wannier G.H.: Statistics of the two-dimensional ferromagnet part II. Phys. Rev. 60(3), 263 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lamers J.: Integral formula for elliptic SOS models with domain walls and a reflecting end. Nucl. Phys. B 901, 556–583 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb E.H.: Exact solution of the F model of an antiferroelectric. Phys. Rev. Lett. 18, 1046–1048 (1967)

    Article  ADS  Google Scholar 

  41. Lieb E.H.: Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18, 692–694 (1967)

    Article  ADS  Google Scholar 

  42. Lieb E.H.: Exact solution of the two-dimensional slater KDP model of a ferroelectric. Phys. Rev. Lett. 19, 108–110 (1967)

    Article  ADS  Google Scholar 

  43. Lieb E.H.: Residual entropy of square lattice. Phys. Rev. 162(1), 162 (1967)

    Article  ADS  Google Scholar 

  44. Liouville J.: Note sur lintégration des équations différentielles de la dynamique. J. Math. Pures Appl. 20, 137–138 (1855)

    Google Scholar 

  45. Lieb E.H., Wu F.Y.: Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968)

    Article  ADS  Google Scholar 

  46. Ovsienko V., Tabachnikov S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Number 165 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  47. Pauling L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680 (1935)

    Article  Google Scholar 

  48. Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Baxter Q-operator from quantum K-theory (2016). arXiv:1612.08723 [math.AG]

  49. Reshetikhin N.Y.: The spectrum of the transfer-matrices connected with Kac–Moody algebras. Lett. Math. Phys. 14(3), 235–246 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Riccato, J.: Animadversiones in aequationes differentiales secundi gradus. In: Actorum Eruditorum, quae Lipsiae publicantur, Supplementa, vol. 8, pp. 66–73 (1724)

  51. Sklyanin, E.K.: The quantum Toda chain. In: Lecture Notes in Physics, vol. 226, pp. 196–233 (1985)

  52. Slavnov N.A.: Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79(2), 502–508 (1989)

    Article  MathSciNet  Google Scholar 

  53. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D.: Quantum inverse problem method .1. Theor. Math. Phys. 40(2), 688–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stroganov Y.G.: A new calculation method for partition functions in some lattice models. Phys. Lett. A 74, 116 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  55. Takhtadzhyan L.A., Faddeev L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv. 11(34), 11–68 (1979)

    Article  Google Scholar 

  56. Yang C.N., Yang C.P.: One-dimensional chain of anisotropic spin–spin interactions. Phys. Lett. 20(1), 9 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  57. Yang C.N., Yang C.P.: One-dimensional chain of anisotropic spin–spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321–327 (1966)

    Article  ADS  Google Scholar 

  58. Yang C.N., Yang C.P.: One-dimensional chain of anisotropic spin–spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev. 150, 327–339 (1966)

    Article  ADS  Google Scholar 

  59. Yang C.N., Yang C.P.: One-dimensional chain of anisotropic spin–spin interactions. III. Applications. Phys. Rev. 151, 258–264 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Galleas.

Additional information

Communicated by C. Schweigert

The work of W.G. is partially supported by the Swiss National Science Foundation through the NCCR SwissMAP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galleas, W. Six-Vertex Model and Non-linear Differential Equations. I: Spectral Problem. Commun. Math. Phys. 363, 59–96 (2018). https://doi.org/10.1007/s00220-018-3232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3232-7

Navigation