Skip to main content
Log in

Generalized Stealthy Hyperuniform Processes: Maximal Rigidity and the Bounded Holes Conjecture

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study translation invariant stochastic processes on \({\mathbb{R}^{d}}\) or \({\mathbb{Z}^{d}}\) whose diffraction spectrum or structure function S(k), i.e. the Fourier transform of the truncated total pair correlation function, vanishes on an open set U in the wave space. A key family of such processes are “stealthy” hyperuniform point processes, for which the origin k = 0 is in U; these are of much current physical interest. We show that all such processes exhibit the following remarkable maximal rigidity: namely, the configuration outside a bounded region determines, with probability 1, the exact value (or the exact locations of the points) of the process inside the region. In particular, such processes are completely determined by their tail. In the 1D discrete setting (i.e. \({\mathbb{Z}}\)-valued processes on \({\mathbb{Z}}\)), this can also be seen as a consequence of a recent theorem of Borichev et al. (Spectra of stationary processes on Z, vol. 261. Birkhäuser, Cham, 2017); in higher dimensions or in the continuum, such a phenomenon seems novel. For stealthy hyperuniform point processes, we prove the Zhang–Stillinger–Torquato conjecture (Zhang et al. in Soft Matter 13:6197–6207, 2017. arXiv:1705.04415) that such processes have bounded holes (empty regions), with a universal bound that depends inversely on the size of U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Martin P.: Structure of Gibbs states of one-dimensional Coulomb systems. Commun. Math. Phys. 78(1), 99–116 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baake M., Grimm U.: Aperiodic Order Vol. 1. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  3. Baake M., Birkner M., Moody R.: Diffraction of stochastic point sets: explicitly computable examples. Commun. Math. Phys. 293(3), 611–660 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Baake M., Koesters H., Moody R.: Diffraction theory of point processes: systems with clumping and repulsion. J. Stat. Phys. 159(4), 915–936 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Borichev, A., Sodin, M., Weiss, B.: Spectra of stationary processes on Z. In: Baranov, A., Kisliakov, S., Nikolski, N. (eds.) 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, vol. 261. Birkhäuser, Cham (2017)

  6. Bufetov A.I.: Rigidity of determinantal point processes with the Airy, the Bessel and the Gamma kernel. Bull. Math. Sci. 6(1), 163–172 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burcaw L., Fieremans E., Novikov D.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 18 (2015)

    Article  Google Scholar 

  8. Chertkov E., DiStasio R.A Jr., Zhang G., Car R., Torquato S.: Inverse design of disordered stealthy hyperuniform spin chains. Phys. Rev. B 93, 064201 (2016)

    Article  ADS  Google Scholar 

  9. Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes, Vols. I (2nd edn., 2003) and II. Springer, Berlin (2007)

  10. DeglInnocenti R., Shah Y.D., Masini L., Ronzani A., Pitanti A., Ren Y., Jessop D.S., Tredicucci , Beere , Ritchie D.A.: THz quantum cascade lasers based on a hyperuniform design. Proc. SPIE 9370, 93700A (2015)

    ADS  Google Scholar 

  11. Florescu M., Torquato S., Steinhardt P.: Designer disordered materials with large complete photonic band gaps. Proc. Natl. Acad. Sci. USA 106, 20658 (2009)

    Article  ADS  Google Scholar 

  12. Ghosh S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3-4), 643–665 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghosh, S.: Palmmeasures and rigidity phenomena in point processes. Electron.Commun. Probab. 21 (2016)

  14. Ghosh S., Lebowitz J.: Number rigidity in superhomogeneous random point fields. J. Stat. Phys. 166(3-4), 1016–1027 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ghosh, S., Peres,Y.:Rigidity and tolerance in point processes: Gaussian zeros andGinibre eigenvalues. Duke Math. J. 166(10), 1789–1858 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ghosh, S., Krishnapur, M.: Rigidity hierarchy in random point fields: random polynomials and determinantal processes. arXiv:1510.08814

  17. Goldstein S., Lebowitz J., Speer E.: Large deviations for a point process of bounded variability. Markov Process. Relat. Fields 12, 235–256 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6(3), 440–449 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Haberko J., Muller N., Scheffold F.: Direct laser writing of three dimensional network structures as templates for disordered photonic materials. Phys. Rev.A 88, 043822 (2013)

    Article  ADS  Google Scholar 

  20. Hexner D., Levine D.: Hyperuniformity of critical absorbing states. Phys. Rev. Lett. 114, 110602 (2015)

    Article  ADS  Google Scholar 

  21. Hexner, D., Chaikin, P., Levine, D.: Enhanced hyperuniformity from random reorganization. Proc. Natl. Acad. Sci. 114(17), 4294–4299 (2017)

  22. Jancovici B., Lebowitz J., Manificat G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72(3), 773–787 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jiao Y., Torquato S.: Maximally random jammed packings of Platonic solids: hyperuni form long-range correlations and isostaticity. Phys. Rev. E 84, 041309 (2011)

    Article  ADS  Google Scholar 

  24. Jiao Y., Lau T., Hatzikirou H., Meyer-Hermann M., Corbo J.C., Torquato S.: Avian photoreceptor patterns represent a disordered hyper uniform solution to a multiscale packing problem. Phys. Rev. E 89, 022721 (2014)

    Article  ADS  Google Scholar 

  25. Lebowitz J.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27, 1491–1494 (1983)

    Article  ADS  Google Scholar 

  26. Marcotte E., Stillinger F., Torquato S.: Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition. J. Chem. Phys. 138, 12A508 (2013)

    Article  Google Scholar 

  27. Martin Ph., Yalcin T.: The charge fluctuations in classical Coulomb systems. J. Stat. Phys. 22(4), 435–463 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. Osada H., Shirai T.: Absolute continuity and singularity of Palmmeasures of the Ginibre point process. Probab. Theory Relat. Fields 165(3-4), 725–770 (2016)

    Article  MATH  Google Scholar 

  29. Torquato S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  30. Torquato S.: Hyperuniformity and its generalizations. Phys. Rev. E 94(2), 022122 (2016)

    Article  ADS  Google Scholar 

  31. Torquato S., Stillinger F.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Torquato S., Zhang G., Stillinger F.H.: Ensemble theory for stealthy hyperuniform disordered ground states. Phys. Rev. X 5, 021020 (2015)

    Google Scholar 

  33. Zhang G., Stillinger F.H., Torquato S.: Ground states of stealthy hyperuniform potentials: I Entropically favored configurations. Phys. Rev. E 92, 022119 (2015)

    Google Scholar 

  34. Zhang G., Stillinger F.H., Torquato S.: Ground states of stealthy hyperuniform potentials: II. Stacked-slider phases. Phys. Rev. E 92, 022120 (2015)

    Article  Google Scholar 

  35. Zhang G., Stillinger F.H., Torquato S.: Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems. J. Chem. Phys. 145, 244109 (2016)

    Article  ADS  Google Scholar 

  36. Zhang G., Stillinger F.H., Torquato S.: Can exotic disordered ”stealthy” particle configurations tolerate arbitrarily large holes?. Soft Matter 13, 6197–6207 (2017) arXiv:1705.04415

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of J.L.L. was supported in part by the AFOSR Grant FA9550-16-1-0037. The work of S.G. was supported in part by the ARO Grant W911NF-14-1-0094, the NSF Grant DMS-1148711 and the NUS Grant R-146-000-250-133. J.L.L. thanks the Systems Biology group of the Institute for Advanced Studies for their hospitality during this work. The authors thank Salvatore Torquato for valuable discussions, and the anonymous referees for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel L. Lebowitz.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Lebowitz, J.L. Generalized Stealthy Hyperuniform Processes: Maximal Rigidity and the Bounded Holes Conjecture. Commun. Math. Phys. 363, 97–110 (2018). https://doi.org/10.1007/s00220-018-3226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3226-5

Navigation