Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 2, pp 797–845 | Cite as

The Morita Theory of Quantum Graph Isomorphisms

  • Benjamin Musto
  • David Reutter
  • Dominic VerdonEmail author
Open Access
Article

Abstract

We classify instances of quantum pseudo-telepathy in the graph isomorphism game, exploiting the recently discovered connection between quantum information and the theory of quantum automorphism groups. Specifically, we show that graphs quantum isomorphic to a given graph are in bijective correspondence with Morita equivalence classes of certain Frobenius algebras in the category of finite-dimensional representations of the quantum automorphism algebra of that graph. We show that such a Frobenius algebra may be constructed from a central type subgroup of the classical automorphism group, whose action on the graph has coisotropic vertex stabilisers. In particular, if the original graph has no quantum symmetries, quantum isomorphic graphs are classified by such subgroups. We show that all quantum isomorphic graph pairs corresponding to a well-known family of binary constraint systems arise from this group-theoretical construction. We use our classification to show that, of the small order vertex-transitive graphs with no quantum symmetry, none is quantum isomorphic to a non-isomorphic graph. We show that this is in fact asymptotically almost surely true of all graphs.

Notes

Acknowledgments

We are grateful to Jamie Vicary for many useful discussions and to David Roberson for sending us an early draft of [34]. We thank an anonymous referee for helpful comments on an earlier draft of this work. This work was supported by the Engineering and Physical Sciences Research Council and the Clarendon Trust.

References

  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425. IEEE (2004).  https://doi.org/10.1109/LICS.2004.1319636. arXiv:quant-ph/0402130
  2. 2.
    Arkhipov, A.: Extending and characterizing quantum magic games (2012). arXiv:1209.3819
  3. 3.
    Atserias, Albert, Mančinska, L., Roberson, D.E., Šámal, R.,Severini, S., Varvitsiotis, A.: Quantum and non-signalling graph isomorphisms (2016). arXiv:1611.09837
  4. 4.
    Baez, J.: Lecture notes on quantum gravity. Fall (2004) Week 9. Available online at http://math.ucr.edu/home/baez/qg-fall2004/f04week09.pdf
  5. 5.
    Bahturin Y.A., Sehgal S.K., Zaicev M.V.: Group gradings on associative algebras. J. Algebra 241(2), 677–698 (2001).  https://doi.org/10.1006/jabr.2000.8643 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Banica T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005).  https://doi.org/10.1016/j.jfa.2004.11.002 arXiv:math/0311402 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Banica T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005) arXiv:math/0304025 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Banica, T.: Higher transitive quantum groups: theory and models. arXiv:1712.04067 (2017)
  9. 9.
    Banica T., Bichon J.: Quantum automorphism groups of vertex-transitive graphs of order \({\leq}\) 11. J. Algebra. Comb. 26(1), 83–105 (2007).  https://doi.org/10.1007/s10801-006-0049-9 arXiv:math/0601758 CrossRefzbMATHGoogle Scholar
  10. 10.
    Banica T., Bichon J.: Quantum groups acting on 4 points. J. für die reine und angewandte Mathematik (Crelles J.) 626, 75–114 (2009).  https://doi.org/10.1515/crelle.2009.003 arXiv:math/0703118 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Banica T., Bichon J., Chenevier G.: Graphs having no quantum symmetry. Annales de l’institut Fourier 57(3), 955–971 (2007).  https://doi.org/10.5802/aif.2282 arXiv:math/0605257 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Banica T., Collins B.: Integration over the Pauli quantum group. J. Geom. Phys. 58(8), 942–961 (2008).  https://doi.org/10.1016/j.geomphys.2008.03.002 arXiv:math/0610041 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ben David N., Ginosar Y., Meir E.: Isotropy in group cohomology. Bull. Lond. Math. Soc. 46(3), 587–599 (2014).  https://doi.org/10.1112/blms/bdu018 arXiv:1309.2438 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bichon J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003).  https://doi.org/10.1090/S0002-9939-02-06798-9 arXiv:math/9902029 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.-H.: Tensor Categories and Endomorphisms of von Neumann Algebras. Springer, New York (2015).  https://doi.org/10.1007/978-3-319-14301-9. arXiv:1407.4793
  16. 16.
    Borceux, F.: Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994).  https://doi.org/10.1017/CBO9780511525858
  17. 17.
    Brassard G.: Quantum communication complexity. Found. Phys. 33(11), 1593–1616 (2003).  https://doi.org/10.1023/A:1026009100467 arXiv:math/quant-ph/0101005 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Brassard G., Broadbent A., Tapp A.: Quantum pseudo-telepathy. Found. Phys. 35(11), 1877–1907 (2005).  https://doi.org/10.1007/s10701-005-7353-4 arXiv:quant-ph/0407221 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Carqueville N., Runkel I.: Orbifold completion of defect bicategories. Quantum Topol. 7(2), 203–279 (2016).  https://doi.org/10.4171/qt/76 arXiv:1210.6363 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Computational Complexity. Proceedings of 19th IEEE Annual Conference on IEEE, pp. 236–249. IEEE, (2004).  https://doi.org/10.1109/CCC.2004.1313847. arXiv:quant-ph/0404076
  21. 21.
    Coecke B.: Quantum picturalism. Contemp. Phys. 51(1), 59–83 (2010).  https://doi.org/10.1080/00107510903257624 arXiv:0908.1787 ADSCrossRefGoogle Scholar
  22. 22.
    Coecke, B., Pavlović, D., Vicary, J.: A new description of orthogonal bases. Math. Struct. Comput. Sci. (2009).  https://doi.org/10.1017/s0960129512000047. arXiv:0810.0812
  23. 23.
    Duan R., Severini S., Winter A.: Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans. Inf. Theory 59(2), 1164–1174 (2013).  https://doi.org/10.1109/TIT.2012.2221677 arXiv:1002.2514 CrossRefzbMATHGoogle Scholar
  24. 24.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. American Mathematical Society (2015).  https://doi.org/10.1090/surv/205. http://www-math.mit.edu/etingof/~egnobookfinal.pdf
  25. 25.
    Heunen C., Karvonen M.: Monads on dagger categories. Theory Appl. Categ. 31(35), 1016–1043 (2016) arXiv:1602.04324 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Heunen C., Vicary J., Wester L.: Mixed quantum states in higher categories. Electron. Proc. Theor. Comput. Sci. 172, 304–315 (2014).  https://doi.org/10.4204/eptcs.172.22 arXiv:1405.1463 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jones Vaughan, F.R.: Planar algebras, I. arXiv:math/9909027 (1999)
  28. 28.
    Kelly, G., Laplaza, M.: Coherence for compact closed categories. J. Pure Appl. Algebra 19(Supplement C):193–213 (1980). https://doi.org/10.1016/0022-4049(80)90101-2
  29. 29.
    Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012).  https://doi.org/10.1007/s00220-012-1500-5 arXiv:1104.5047 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Klappenecker, A., Rötteler, M.: Unitary error bases: constructions, equivalence, and applications. In: Marc Fossorier, Tom Høholdt, Alain Poli (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 139–149. Springer, Berlin (2003).  https://doi.org/10.1007/3-540-44828-4_16
  31. 31.
    Kong L., Runkel I.: Morita classes of algebras in modular tensor categories. Adv. Math. 219(5), 1548–1576 (2008).  https://doi.org/10.1016/j.aim.2008.07.004 arXiv:0708.1897 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kuperberg, G., Weaver, N.: (2012) A von Neumann algebra approach to quantum metrics/quantum relations, volume 215. American Mathematical Society.  https://doi.org/10.1090/S0065-9266-2011-00637-4. arXiv:1005.0353
  33. 33.
    Lack, S., Street, R.: The formal theory of monads II. J. Pure Appl. Algebra 175(1–3):243–265 (2002). http://maths.mq.edu.au/~slack/papers/ftm2.html. https://doi.org/10.1016/s0022-4049(02)00137-8
  34. 34.
    Lupini, M., Maninska,L., Roberson, D.E.: Nonlocal games and quantum permutation groups (2017). arXiv:1712.01820
  35. 35.
    Marsden, D.: Category theory using string diagrams (2014). arXiv:1401.7220
  36. 36.
    Mermin N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65(27), 3373 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Musto, B., Reutter,D., Verdon, D.: A compositional approach to quantum functions (2017). To appear. arXiv:1711.07945
  38. 38.
    Ocneanu, A.: Quantized groups, string algebras, and Galois theory for algebras. In: Evans, D.E., Takesaki, M. (eds.) Operator Algebras and Applications, pp. 119–172. Cambridge University Press (CUP), Cambridge (1989). https://doi.org/10.1017/cbo9780511662287.008
  39. 39.
    Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transf. Groups 8(2), 177–206 (2003).  https://doi.org/10.1007/s00031-003-0515-6 arXiv:math/0111139 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ostrik V.: Module categories over the Drinfeld double of a finite group. IMRN 27, 1507–1520 (2003).  https://doi.org/10.1155/S1073792803205079 arXiv:math/0202130 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Reutter, D., Vicary, J.: Biunitary constructions in quantum information (2016). arXiv:1609.07775
  42. 42.
    Runkel, I., Fjelstad, J., Fuchs, J., Schweigert, C.: Topological and conformal field theory as Frobenius algebras (2007).  https://doi.org/10.1090/conm/431/08275. arXiv:math/0512076
  43. 43.
    Schmidt, S.: The Petersen graph has no quantum symmetry (2018). arXiv:1801.02942
  44. 44.
    Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, Lecture Notes in Physics, pp. 289–355. Springer, Berlin, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12821-9_4. arXiv:0908.3347
  45. 45.
    Stahlke D.: Quantum zero-error source-channel coding and non-commutative graph theory. IEEE Trans. Inf. Theory 62(1), 554–577 (2016).  https://doi.org/10.1109/TIT.2015.2496377 arXiv:1405.5254 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Vicary J.: Categorical formulation of finite-dimensional quantum algebras. Commun. Math. Phys. 304(3), 765–796 (2010).  https://doi.org/10.1007/s00220-010-1138-0 arXiv:0805.0432 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Vicary, Jamie.: Higher quantum theory. (2012). arXiv:1207.4563
  48. 48.
    Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998).  https://doi.org/10.1007/s002200050385 arXiv:math/9807091 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Weaver, N.: Quantum relations (2010). arXiv:1005.0354
  50. 50.
    Weaver, N.: Quantum graphs as quantum relations (2015). arXiv:1506.03892
  51. 51.
    Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations