Skip to main content
Log in

The Sign Clusters of the Massless Gaussian Free Field Percolate on \({\mathbb{Z}^{d}, d \geqslant 3}\) (and more)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the percolation phase transition for level sets of the Gaussian free field on \({\mathbb{Z}^{d}}\), with \({d \geqslant 3}\), and prove that the corresponding critical parameter h*(d) is strictly positive for all \({d \geqslant 3}\), thus settling an open question from (Rodriguez and Sznitman in Commun Math Phys 320(2):571–601, 2013). In particular, this implies that the sign clusters of the Gaussian free field percolate on \({\mathbb{Z}^{d}}\), for all \({d \geqslant 3}\). Among other things, our construction of an infinite cluster above small, but positive level h involves random interlacements at level u > 0, a random subset of \({\mathbb{Z}^{d}}\) with desirable percolative properties, introduced in Sznitman (Ann Math (2) 171(3):2039–2087, 2010) in a rather different context, a certain Dynkin-type isomorphism theorem relating random interlacements to the Gaussian free field (Sznitman in Electron Commun Probab 17(9):9, 2012), and a recent coupling of these two objects (Lupu in Ann Probab 44(3):2117–2146, 2016), lifted to a continuous metric graph structure over \({\mathbb{Z}^{d}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abächerli A., Sznitman A.-S.: Level-set percolation for the Gaussian free field on a transient tree. Ann. Inst. Henri Poincarérobab. Stat. 54(1), 173–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borodin A.N., Salminen P.: Handbook of Brownian Motion—Facts and Formulae. Probability and Its Applications. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  3. Bricmont J., Lebowitz J.L., Maes C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5-6), 1249–1268 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brydges D., Fröhlich J., Spencer T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83(1), 123–150 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Campanino M., Russo L.: An upper bound on the critical percolation probability for the three dimensional cubic lattice. Ann. Probab. 13(2), 478–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drewitz A., Ráth B., Sapozhnikov A.: An Introduction to Random Interlacements Springer Briefs in Mathematics. Springer, Berlin (2014)

    MATH  Google Scholar 

  7. Drewitz, A., Ráth, B., Sapozhnikov, A.: On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys. 55(8), 083307, 30 (2014)

  8. Drewitz A., Rodriguez P.-F.: High-dimensional asymptotics for percolation of Gaussian free field level sets. Electron. J. Probab. 20(47), 39 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Dynkin E.B.: Markov processes as a tool in field theory. J. Func. Anal. 50(2), 167–187 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenbaum N., Kaspi H., Marcus M.B., Rosen J., Shi Z.: A Ray–Knight theoremfor symmetric Markov processes. Ann. Probab. 28(4), 1781–1796 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Enriquez N., Kifer Y.: Markov chains on graphs and Brownian motion. J. Theor. Probab. 14(2), 495–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Folz M.: Volume growth and stochastic completeness of graphs. Trans. Am. Math. Soc. 366(4), 2089–2119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lupu T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lupu, T., Sabot, C., Tarrès, P.: Inverting the coupling of the signed Gausssian free field with a loop soup. Preprint, arXiv:1701.01092 (2017)

  15. Marcus M.B., Rosen J.: Markov Processes, Gaussian Processes, and Local Times, Volume 100 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  16. Marinov, V.: Percolation in Correlated Systems. Ph.D. thesis. Rutgers University (2007)

  17. Popov S., Ráth B.: On decoupling inequalities and percolation of excursion sets of the Gaussian free field. J. Stat. Phys. 159(2), 312–320 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Popov S., Teixeira A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (JEMS) 17(10), 2545–2593 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ráth B., Sapozhnikov A.: On the transience of random interlacements. Electron. Commun. Probab. 16, 379–391 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ráth B., Sapozhnikov A.: The effect of small quenched noise on connectivity properties of random interlacements. Electron. J. Probab. 18(4), 20 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Revuz D., Yor M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften, 3rd edition. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Rodriguez P.-F.: Level set percolation for random interlacements and the Gaussian free field. Stoch. Process. Appl. 124(4), 1469–1502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodriguez, P.-F.: Decoupling inequalities for the Ginzburg-Landau \({\nabla_\varphi}\) models. Preprint, arXiv:1612.02385 (2016)

  24. Rodriguez P.-F., Sznitman A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Symanzik, K.: Euclidean quantum field theory. In: Scuola internazionale di Fisica “Enrico Fermi”. XLV Corso. Academic Press (1969)

  26. Sznitman A.-S.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sznitman A.-S.: Decoupling inequalities and interlacement percolation on \({G \times \mathbb{Z}}\). Invent. Math. 187(3), 645–706 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sznitman A.-S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17(9), 9 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Sznitman A.-S.: Random interlacements and the Gaussian free field. Ann. Probab. 40(6), 2400–2438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sznitman A.-S.: Topics in Occupation Times and Gaussian Free Fields Zurich Lectures in Advanced Mathematics.. European Mathematical Society (EMS), Z00FC;rich (2012)

    Book  MATH  Google Scholar 

  31. Sznitman A.-S.: Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Jpn. 67(4), 1801–1843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sznitman A.-S.: Coupling and an application to level-set percolation of the Gaussian free field. Electron. J. Probab. 21(35), 26 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Prévost.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drewitz, A., Prévost, A. & Rodriguez, PF. The Sign Clusters of the Massless Gaussian Free Field Percolate on \({\mathbb{Z}^{d}, d \geqslant 3}\) (and more). Commun. Math. Phys. 362, 513–546 (2018). https://doi.org/10.1007/s00220-018-3209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3209-6

Navigation