Skip to main content
Log in

The Hyperbolic Yang–Mills Equation for Connections in an Arbitrary Topological Class

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is the third part of a four-paper sequence, which establishes the Threshold Conjecture and the Soliton-Bubbling versus Scattering Dichotomy for the energy critical hyperbolic Yang–Mills equation in the (4 + 1)-dimensional Minkowski space-time. This paper provides basic tools for considering the dynamics of the hyperbolic Yang–Mills equation in an arbitrary topological class at an optimal regularity. We generalize the standard notion of a topological class of connections on \({\mathbb{R}^{d}}\), defined via a pullback to the one-point compactification \({\mathbb{S}^{d} = \mathbb{R}^{d} \cup \{\infty}\}\), to rough connections with curvature in the critical space \({L^{\frac{d}{2}}(\mathbb{R}^{d})}\). Moreover, we provide excision and extension techniques for the Yang–Mills constraint (or Gauss) equation, which allow us to efficiently localize Yang–Mills initial data sets. Combined with the results in the previous paper (Oh and Tataru in The hyperbolic Yang–Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions, 2017. arXiv:1709.09332), we obtain local well-posedness of the hyperbolic Yang–Mills equation on \({\mathbb{R}^{1+d}}\)\({(d \geq 4)}\) in an arbitrary topological class at optimal regularity in the temporal gauge (where finite speed of propagation holds). In addition, in the energy subcritical case d =  3, our techniques provide an alternative proof of the classical finite energy global well-posedness theorem of Klainerman–Machedon (Ann. Math. (2) 142(1):39–119, 1995. https://doi.org/10.2307/2118611), while also removing the smallness assumption in the temporal-gauge local well-posedness theorem of Tao (J. Differ. Equ. 189(2):366–382, 2003. https://doi.org/10.1016/S0022-0396(02)00177-8). Although this paper is a part of a larger sequence, the materials presented in this paper may be of independent and general interest. For this reason, we have organized the paper so that it may be read separately from the sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978) https://doi.org/10.1016/0375-9601(78)90141-X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Atiyah M.F., Hitchin N.J., Singer I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A 362(1711), 425–461 (1978) https://doi.org/10.1098/rspa.1978.0143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bor G.: Yang–Mills fields which are not self-dual. Commun. Math. Phys. 145(2), 393–410 (1992) http://projecteuclid.org/euclid.cmp/1104249648

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bott R.: An application of the Morse theory to the topology of Lie-groups. Bull. Soc. Math. Fr. 84, 251–281 (1956) http://www.numdam.org/item?id=BSMF_1956_84_251_0

    Article  MathSciNet  MATH  Google Scholar 

  5. Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) 94, vi+103 (2003)

  6. Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000) https://doi.org/10.1007/PL00005533

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Corvino J., Schoen R.M.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185–217 (2006) http://projecteuclid.org/euclid.jdg/1146169910

    Article  MathSciNet  MATH  Google Scholar 

  8. Czimek, S.: An extension procedure for the constraint equations, preprint (2018) PDE 4:2. arXiv:1609.08814

  9. Czimek, S.: Boundary harmonic coordinates and the localised bounded L 2 curvature theorem, preprint (2017). arXiv:1708.01667

  10. Gursky, M., Kelleher, C., Streets, J.: A conformally invariant gap theorem in Yang–Mills theory, preprint (2017). arXiv:1708.01157

  11. Klainerman S., Machedon M.: Finite energy solutions of the Yang-Mills equations in \({{\mathbb{R}}^{3+1}}\). Ann. Math. (2) 142(1), 39–119 (1995) https://doi.org/10.2307/2118611

    Article  MathSciNet  MATH  Google Scholar 

  12. Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, 2nd edn., vol. 140. Birkhäuser, Basel (2002)

  13. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I. Wiley Classics Library, Wiley, New York, (1996). Reprint of the 1963 original, A Wiley-Interscience Publication

  14. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. II. Wiley Classics Library, Wiley, New York (1996). Reprint of the 1969 original, A Wiley-Interscience Publication

  15. Krieger J., Tataru D.: Global well-posedness for the Yang–Mills equation in 4 + 1 dimensions. Small energy. Ann. Math. (2) 185(3), 831–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milnor, J.W., Stasheff, J.D.: Characteristic Classes, Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1974)

  17. Oh S.-J.: Gauge choice for the Yang–Mills equations using the Yang–Mills heat flow and local well-posedness in H 1. J. Hyperbolic Differ. Equ. 11(1), 1–108 (2014) https://doi.org/10.1142/S0219891614500015

    Article  MathSciNet  MATH  Google Scholar 

  18. Oh S.-J.: Finite energy global well-posedness of the Yang-Mills equations on \({{\mathbb{R}}^{1+3}}\): an approach using the Yang–Mills heat flow. Duke Math. J. 164(9), 1669–1732 (2015) https://doi.org/10.1215/00127094-3119953

    Article  MathSciNet  MATH  Google Scholar 

  19. Oh, S.-J., Tataru, D.: Local well-posedness of the (4 +  1)-dimensional Maxwell–Klein–Gordon equation at energy regularity. Ann. PDE 2(1), 70, Art. 2 (2016). arXiv:1503.01560, http://dx.doi.org/10.1007/s40818-016-0006-4

  20. Oh, S.-J., Tataru, D.: The Yang–Mills heat flow and the caloric gauge, preprint (2017). arXiv:1709.08599

  21. Oh, S.-J., Tataru, D.: The hyperbolic Yang–Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions, preprint (2017). arXiv:1709.09332

  22. Oh, S.-J., Tataru, D.: The Threshold Conjecture for the energy critical hyperbolic Yang–Mills equation, preprint (2017). arXiv:1709.08606

  23. Oh, S.-J., Tataru, D.: The threshold theorem for the (4 + 1)-dimensional Yang–Mills equation: an overview of the proof, preprint (2017). arXiv:1709.09088

  24. Parker T.H.: A Morse theory for equivariant Yang–Mills. Duke Math. J. 66(2), 337–356 (1992) https://doi.org/10.1215/S0012-7094-92-06610-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Sadun L., Segert J.: Non-self-dual Yang–Mills connections with nonzero Chern number. Bull. Am. Math. Soc. (N.S.) 24(1), 163–170 (1991) https://doi.org/10.1090/S0273-0979-1991-15978-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983) http://projecteuclid.org/euclid.jdg/1214437663

    Article  MathSciNet  MATH  Google Scholar 

  27. Sibner L.M., Sibner R.J., Uhlenbeck K.: Solutions to Yang–Mills equations that are not self-dual. Proc. Natl. Acad. Sci. USA 86(22), 8610–8613 (1989) https://doi.org/10.1073/pnas.86.22.8610

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  29. Tao T.: Local well-posedness of the Yang–Mills equation in the temporal gauge below the energy norm. J. Differ. Equ. 189(2), 366–382 (2003) https://doi.org/10.1016/S0022-0396(02)00177-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Uhlenbeck K.K.: Connections with L p bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982) http://projecteuclid.org/euclid.cmp/1103920743

    Article  ADS  MATH  Google Scholar 

  31. Uhlenbeck K.K.: The Chern classes of Sobolev connections. Commun. Math. Phys. 101(4), 449–457 (1985) http://projecteuclid.org/euclid.cmp/1104114242

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S.-J. Oh was supported by the Miller Research Fellowship from the Miller Institute, UC Berkeley and the TJ Park Science Fellowship from the POSCO TJ Park Foundation. D. Tataru was partially supported by the NSF Grant DMS-1266182 as well as by a Simons Investigator Grant (Grant No. 291820) from the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tataru.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SJ., Tataru, D. The Hyperbolic Yang–Mills Equation for Connections in an Arbitrary Topological Class. Commun. Math. Phys. 365, 685–739 (2019). https://doi.org/10.1007/s00220-018-3205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3205-x

Navigation