Skip to main content
Log in

Hardy–Lieb–Thirring Inequalities for Fractional Pauli Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide lower bounds for the sum of the negative eigenvalues of the operator \({|\sigma\cdot p_A|^{2s} - C_s/|x|^{2s} + V}\) in three dimensions, where \({s\in (0, 1]}\), covering the interesting physical cases s =  1 and s =  1/2. Here \({\sigma}\) is the vector of Pauli matrices, \({p_A = p - A}\), with \({p = -i\nabla}\) the three-dimensional momentum operator and A a given magnetic vector potential, and Cs is the critical Hardy constant, that is, the optimal constant in the Hardy inequality \({|p|^{2s} \geq C_s/|x|^{2s}}\). If spin is neglected, results of this type are known in the literature as Hardy–Lieb–Thirring inequalities, which bound the sum of negative eigenvalues from below by \({-M_s\int V_{-}^{1 + 3/(2s)}}\), for a positive constant Ms. The inclusion of magnetic fields in this case follows from the non-magnetic case by diamagnetism. The addition of spin, however, offers extra challenges that make the result more elusive. It is the purpose of this article to resolve this problem by providing simple bounds for the sum of the negative eigenvalues of the operator in question. In particular, for \({1/2 \leq s \leq 1}\) we are able to express the bound purely in terms of the magnetic field energy \({\|B\|_2^2}\) and integrals of powers of the negative part of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benguria R., Loss M.: A simple proof of a theorem by Laptev and Weidl. Math. Res. Lett. 7, 195 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birman, M.S., Koplienko, L.S., Solomyak, M.Z.: Estimates for the spectrum of the difference between fractional powers of two self-adjoint operators, Izv. Vysš. Učebn. Zaved. Matematika, no. 3 (154), 3–10 (1975). (Russian) Translation to English in: Soviet Mathematics, 19 (3), 1–6 (1975)

  3. Bugliaro L., Fefferman C., Fröhlich J., Graf G.M., Stubbe J.: A Lieb–Thirring bound for a magnetic Pauli Hamiltonian. Commun. Math. Phys. 187, 567 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cwikel M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Frank, R.L., Weth, T.: Remainder terms in the fractional sobolev inequality. Indiana Univ. Math. J. 62, 1381 (2013)

  6. Daubechies I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dolbeault J., Laptev A., Loss M.: Lieb–Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekholm T., Frank R.L.: On Lieb–Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264, 725 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Erdös L.: Magnetic Lieb–Thirring inequalities. Commun. Math. Phys. 170, 629 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Erdös L., Fournais S., Solovej J.P.: Relativistic Scott correction in self-generated magnetic fields. J. Math. Phys. 53, 095202 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Erdös L., Solovej J.P.: Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields, I: nonasymptotic Lieb–Thirring-type estimate. Duke Math. J 96, 127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös L., Solovej J.P.: Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields, II: leading order asymptotic estimates. Commun. Math. Phys. 188, 599 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Erdös L., Solovej J.P.: Uniform Lieb–Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field. Ann. Henri Poincaré 5, 671 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frank R.L.: A simple proof of Hardy–Lieb–Thirring inequalities. Commun. Math. Phys. 290, 789 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Frank, R.L.: Eigenvalue bounds for the fractional laplacian: a review (2017). arXiv:1603.09736

  16. Frank R.L., Lieb E.H., Seiringer R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925 (2008)

    Article  MATH  Google Scholar 

  17. Frank R.L., Lieb E.H., Seiringer R.: Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value. Commun. Math. Phys. 275, 479 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fröhlich J., Lieb E.H., Loss M.: Stability of Coulomb systems with magnetic fields I. The one-electron atom. Commun. Math. Phys. 104, 251 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hansen F., Pedersen G.: Jensen’s operator inequality. Bull. Lond. Math. Soc. 35, 553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herbst I.W.: Spectral theory of the operator \({\left(p^2 + m^2\right)^{1/2} - Ze^2/r}\). Commun. Math. Phys. 53, 285–294 (1977)

    Article  ADS  MATH  Google Scholar 

  21. Hundertmark D., Lieb E.H., Thomas L.E.: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator. Adv. Theor. Math. Phys. 2, 719 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hundertmark D., Laptev A., Weidl T.: New bounds on the Lieb–Thirring constants. Invent. Math. 140, 693 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Laptev, A., Weidl, T.: Sharp Lieb–Thirring inequalities in high dimensions. Acta Math. 184, 87 (2000)

  24. Lenzmann E., Lewin M.: Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math J. 152, 257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lieb, E.H.: Lieb–Thirring Inequalities, Kluwer Encyclopedia of Mathematics, Supplement Vol. II, 311 (2000). arXiv:math-ph/0003039

  26. Lieb E.H.: Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Am. Math. Soc. 82, 751 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lieb, E.H.: The number of bound states of one-body Schrödinger operators and the Weyl Problem, Geometry of the Laplace Operator. In: Proceedings of Symposia in Pure Mathematics, vol. 36, p. 250. American Mathematical Society (1980)

  28. Lieb E.H., Aizenman M.: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. A 66, 427 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lieb E.H., Loss M.: Stability of Coulomb systems with magnetic fields II. The many-electron atom and the one-electron molecule. Commun. Math. Phys. 104, 271 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Lieb E.H., Loss M., Solovej J.P.: Stability of matter in magnetic fields. Phys. Rev. Lett. 75, 985 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lieb E.H., Siedentop H., Solovej J.P.: Stability and instability of relativistic electrons in classical electromagnetic fields. J. Stat. Phys. 89, 37 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lieb, E.H., Siedentop, H., Solovej, J.P.: Stability of relativistic matter with magnetic fields. Phys. Rev. Lett. 79, 1785 (1997)

  33. Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band region. Commun. Pure Appl. Math. 47, 513 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161, 77 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lieb E.H., Solovej J.P., Yngvason J.: Ground states of large quantum dots in magnetic fields. Phys. Rev. B 51, 10646 (1995)

    Article  ADS  Google Scholar 

  36. Lieb, E.H., Thirring, W.E.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687. Erratum: Phys. Rev. Lett. 35, 1116 (1975)

  37. Lieb, E.H., Thirring, W.E.: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton University Press (1976)

  38. Lieb E.H., Yau H-.T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Loss M., Yau H-.T.: Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Rosenbljum, G.V.: The distribution of the discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR 202, 1012 (1972). See also Sov. Math. Dokl. 13, 245 (1972) (English), Izv. Vyss. Ucebn. Zaved. Matem. 164, 75 (1976), and Sov. Math. (Iz VUZ) 20, 63 (1976) (English)

  41. Schwinger J.: On the bound states of a given potential. Proc. Natl. Acad. Sci. 47, 122 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  42. Sobolev A.V.: Lieb–Thirring inequalities for the Pauli operator in three dimensions. IMA Vol. Math. Appl. 95, 155–188 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Sobolev A.V.: On the Lieb–Thirring estimates for the Pauli operator. Duke Math. J. 82, 607 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Solovej J.P., Østergaard Sørensen T., Spitzer W.L.: Relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. 63, 39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weidl, T.: Remarks on virtual bound states for semi-bounded operators. Commun. Part. Differ. Equ. 24(1& 2), 25 (1999)

Download references

Acknowledgements

The authors were partially supported by a Sapere Aude grant from the Independent Research Fund Denmark, Grant number DFF–4181-00221. They would also like to thank the anonymous referee for precise and useful comments that helped make the article better, in particular for pointing out the article by Hansen and Pedersen cited by Eq. (1.28), of which the authors were unaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Fournais.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bley, G.A., Fournais, S. Hardy–Lieb–Thirring Inequalities for Fractional Pauli Operators. Commun. Math. Phys. 365, 651–683 (2019). https://doi.org/10.1007/s00220-018-3204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3204-y

Navigation