Skip to main content
Log in

Competitive Erosion is Conformally Invariant

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a graph-theoretic model of interface dynamics called competitive erosion. Each vertex of the graph is occupied by a particle, which can be either red or blue. New red and blue particles are emitted alternately from their respective bases and perform random walk. On encountering a particle of the opposite color they remove it and occupy its position. We consider competitive erosion on discretizations of ‘smooth’, planar, simply connected, domains. The main result of this article shows that at stationarity, with high probability, the blue and the red regions are separated by the level curves of the Green function, with Neumann boundary conditions, which are orthogonal circular arcs on the disc and hyperbolic geodesics on a general, simply connected domain. This establishes conformal invariance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahlfors, L.V.: Complex analysis: an introduction to the theory of analytic functions of one complex variable

  2. Antunović, T., Dekel, Y., Mossel, E., Peres, Y.: Competing first passage percolation on random regular graphs. Preprint. arXiv:1109.2575 (2011)

  3. Asselah A., Gaudilliere A.: From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models. Ann. Probab. 41(3A), 1115–1159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asselah A., Gaudillière A.: Lower bounds on fluctuations for internal DLA. Probab. Theory Relat. Fields. 158(1–2), 39–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramson M., Lebowitz J.L.: Asymptotic behavior of densities in diffusion-dominated annihilation reactions. Phys. Rev. Lett. 61(21), 2397 (1988)

    Article  ADS  Google Scholar 

  6. Bramson M, Lebowitz J.L.: Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62(1–2), 297–372 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Burdzy K., Chen Z-Q.: Discrete approximations to reflected Brownian motion. Ann. Probab. 36(2), 698–727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z-Q., Fan, W-T.: Hydrodynamic limits and propagation of chaos for interacting random walks in domains. Ann. Appl. Probab. 27(3), 1299–1371. (2017) Preprint. arXiv:1311.2325 (2013)

  9. Duminil-Copin, H., Lucas, C., Yadin, A., Yehudayoff A.: Containing internal diffusion limited aggregation. Electron. Commun. Probab. 18(20) (2013). Preprint. arXiv:1111.0486 (2011)

  10. Fan W-T.: Interacting particle systems with partial annihilation through membranes. Ph.D. thesis, University of Washington (2014)

  11. Fayolle G., Malyshev V.A., Menshikov M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Ganguly, S., Levine, L., Peres, Y., Propp, J.: Formation of an interface by competitive erosion. Probab. Theory Relat. Fields 168(1–2), 455–509 (2017)

  13. Ganguly, S., Peres, Y.: Convergence of discrete green functions with neumann boundary conditions. Preprint. arXiv:1503.06948 (2015)

  14. Ganguly, S., Peres, Y.: Convergence of discrete green functions with neumann boundary conditions. Potential Anal. 46(4), 799–818 (2017)

  15. Griffiths S., Kang R., Oliveira R., Patel V.: Tight inequalities among set hitting times in markov chains. Proc. Am. Math. Soc. 142(9), 3285–3298 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Häggström O., Pemantle et al. R.: First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35(3), 683–692 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jerison D., Levine L., Sheffield S.: Logarithmic fluctuations for internal DLA. J. Am. Math. Soc. 25(1), 271–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerison D., Levine L, Sheffield S.: Internal DLA and the gaussian free field. Duke Math. J. 163(2), 267–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawler, G.F., Bramson, M., Griffeath, D.: Internal diffusion limited aggregation. Ann. Probab. 20(4), 2117–2140 (1992)

  20. Levin, D.A., Peres, Y.: Markov chains and mixing times, vol. 107. American Mathematical Society (2017)

  21. Levine L., Peres Y.: Scaling limits for internal aggregation models with multiple sources. J. Anal. Math. 111(1), 151–219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lyons, R., Peres, Y.: Probability on Trees and Networks. Citeseer (2005)

  23. Pommerenke C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  24. Propp, J.: Private Communication. (2003)

  25. Timár Á.: Boundary-connectivity via graph theory. Proc. Am. Math. Soc. 141(2), 475–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirshendu Ganguly.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S., Peres, Y. Competitive Erosion is Conformally Invariant. Commun. Math. Phys. 362, 455–511 (2018). https://doi.org/10.1007/s00220-018-3196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3196-7

Navigation