Skip to main content
Log in

An Exact Discretization of a Lax Equation for Shock Clustering and Burgers Turbulence I: Dynamical Aspects and Exact Solvability

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a finite dimensional system which arises as an exact discretization of the Lax equation for shock clustering, which describes the evolution of the generator of a Markov process with a finite number of states. The spectral curve of the system is a nodal curve which is fully reducible. In this work, we will show that the flow is conjugate to a straight line motion, and we will also show that the equation is exactly solvable. En route, we will establish a dictionary between an open, dense set of the lower triangular infinitesimal generator matrices and an associated set of algebro-geometric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves. Volume II. Springer, Heidelberg, xxx+963 pp (2011)

    Book  MATH  Google Scholar 

  2. Avellaneda M., Weinan E.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13–38 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Bertoin J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Burgers J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  5. Carraro L., Duchon J.: Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes. Ann. Inst. Henri Poincaré Anal. Non Linéaire. 15, 431–458 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Chabanol M.-L., Duchon J.: Markovian solutions of inviscid Burgers equation. J. Stat. Phys. 114, 525–534 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Deift P., Li L.C., Tomei C.: Matrix factorizations and integrable systems. Comm. Pure Appl. Math. 42, 443–521 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frachebourg L., Martin P.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323–349 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Groeneboom P.: Brownian motion with a parabolic drift and Airy functions. Probab. Theory Relat. Fields 81, 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  10. Gurbatov S., Malakhov A., Saichev A.: Nonlinear RandomWaves and Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester (1991)

    MATH  Google Scholar 

  11. Kaspar D., Rezakhanlou F.: Scalar conservation laws with monotone pure-jump Markov initial conditions. Probab. Theory Relat. Fields 165, 867–899 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li L.-C.: A finite dimensional integrable system arising in the study of shock clustering. Commun. Math. Phys. 340, 1109–1142 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Li L.-C.: Erratum to: A finite dimensional integrable system arising in the study of shock clustering. Commun. Math. Phys. 352, 1265–1269 (2017)

    Article  MATH  ADS  Google Scholar 

  14. Libermann P., Marle C.-M.: Symplectic Geometry and Analytical Mechanics Mathematics and Its Applications, 35. D. Reidel Publishing Co. Dordrecht. (1987) xvi+526 pp

    MATH  Google Scholar 

  15. Menon G., Srinivasan R.: Kinetic theory and Lax equations for shock clustering and Burgers turbulence. J. Stat. Phys. 140, 1195–1223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Menon G.: Complete integrability of shock clustering and Burgers turbulence. Arch. Ration. Mech. Anal. 203, 853–882 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Menon G., Pego R.: Universality classes in Burgers turbulence. Commun. Math. Phys. 273, 177–202 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Norris J.: Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, 2. Cambridge University Press, Cambridge (1998) xvi +237 pp

    Google Scholar 

  19. Poole D.: The stochastic group. Am. Math. Mon. 102, 798–801 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. She Z.-S., Aurell E., Frisch U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Sinai Y.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–621 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Semenov-Tian-Shansky M.: What is a classical r-matrix? Funct. Anal. Appl. 17, 259–272 (1983)

    Article  MATH  Google Scholar 

  23. Shandarin S.F., Zeldovich Y.B.: The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185–220 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  24. Winkel M.: Limit clusters in the inviscid Burgers turbulence with certain random initial velocities. J. Stat. Phys. 107, 893–917 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Woyczyński W.: Göttingen Lectures on Burgers-KPZ Turbulence Lecture Notes in Mathematics, vol. 1700. Springer, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luen-Chau Li.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LC. An Exact Discretization of a Lax Equation for Shock Clustering and Burgers Turbulence I: Dynamical Aspects and Exact Solvability. Commun. Math. Phys. 361, 415–466 (2018). https://doi.org/10.1007/s00220-018-3179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3179-8

Navigation