Skip to main content
Log in

Bihamiltonian Cohomologies and Integrable Hierarchies II: The Tau Structures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from a so-called flat exact semisimple bihamiltonian structure of hydrodynamic type, we arrive at a Frobenius manifold structure and a tau structure for the associated principal hierarchy. We then classify the deformations of the principal hierarchy which possess tau structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buryak A.: Double ramification cycles and integrable hierarchies. Commun. Math. Phys. 336, 1085–1107 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Buryak A., Dubrovin B., Guéré J., Rossi P.: Tau-structure for the double ramification hierarchies, eprint arXiv: 1602.05423

  3. Buryak A., Posthuma H., Shadrin S.: On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket. J. Geom. Phys. 62, 1639–1651 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Buryak A., Posthuma H., Shadrin S.: A polynomial bracket for the Dubrovin–Zhang hierarchies. J. Differ. Geom. 92, 153–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet G., Posthuma H., Shadrin S.: Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed. J. Differ. Geom. 108, 63–89 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Date E., Kashiwara M., Jimbo M., Miwa T.: Transformation groups for soliton equations Nonlinear integrable systems-classical theory and quantum theory (Kyoto, 1981), 39-119,. World Sci Publishing, Singapore (1983)

    Google Scholar 

  7. Dubrovin B.: Geometry of 2D topological field theories Integrable systems and quantum groups (Montecatini Terme, 1993), 120–348, Lecture Notes in Math. 1620,. Springer, Berlin (1996)

    Google Scholar 

  8. Dubrovin B.: Painlevé transcendents in two-dimensional topological field theory The Painlevé property, 287–412, CRM Ser. Math. Phys.. Springer, New York (1999)

    Google Scholar 

  9. Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. eprint arXiv:math/0108160

  10. Dubrovin B., Liu S.-Q., Zhang Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: Quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl.Math. 59, 559–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubrovin B., Novikov S.P.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method. (Russian) Dokl. Dokl Akad. Nauk SSSR 270, 781–785 (1983)

    MathSciNet  ADS  Google Scholar 

  12. Dubrovin B., Liu S.-Q., Yang D., Zhang Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Enriquez B., Frenkel E.: Equivalence of two approaches to integrable hierarchies of KdV type. Commun. Math. Phys. 185, 211–230 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Falqui G., Lorenzoni P.: Exact Poisson pencils, \({\tau}\) -structures and topological hierarchies. Phys. D 241, 2178–2187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferapontov E.V.: Compatible Poisson brackets of hydrodynamic type. J. Phys. A 34, 2377–2388 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Hirota R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Hirota R.: The direct method in soliton theory. Cambridge Tracts in Mathematics, 155.. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and \({\tau}\) -function. Phys. D 2, 306–352 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407–448 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Phys. D 4, 26–46 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kac, V.,Wakimoto, M.: Exceptional hierarchies of soliton equations. Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), 191–237, Proc. Sympos. Pure Math., 49, Part 1, Am. Math. Soc., Providence, RI (1989)

  22. Kontsevich M.: Intersection theory on themoduli space of curves and the matrix Airy function. Commun. Math. Phys 147, 1–23 (1992)

    Article  MATH  ADS  Google Scholar 

  23. Liu S.-Q., Zhang Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54, 427–453 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Liu S.-Q., Zhang Y.: Jacobi structures of evolutionary partial differential equations. Adv.Math. 227, 73–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu S.-Q., Zhang Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Commun. Math. Phys. 324, 897–935 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Miramontes J.L.: Tau-functions generating the conservation laws for generalized integrable hierarchies of KdV and affine Toda type. Nucl. Phys. B 547, 623–663 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Sato M.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  28. Sato,M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. In: Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), 259–271, North-Holland Math. Stud., 81, North-Holland, Amsterdam (1983)

  29. Segal G., Wilson G.: Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsarev, S.: Geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph method. Izv. Akad. Nauk SSSR, Ser. Mat. (1990)

  31. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge, MA, 1990), 243–310, Lehigh Univ., Bethlehem, PA (1991)

  32. Wu C.-Z.: Tau functions and Virasoro symmetries for Drinfeld–Sokolov hierarchies. Adv. Math. 306, 603–652 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xue T., Zhang Y.: Bihamiltonian systems of hydrodynamic type and reciprocal transformations. Lett. Math. Phys. 75, 79–92 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Zhang Y.: Deformations of the bihamiltonian structures on the loop space of Frobenius manifolds Recent advances in integrable systems (Kowloon,2000). J. Nonlinear Math. Phys. 9((suppl. 1)), 243–257 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovin, B., Liu, SQ. & Zhang, Y. Bihamiltonian Cohomologies and Integrable Hierarchies II: The Tau Structures. Commun. Math. Phys. 361, 467–524 (2018). https://doi.org/10.1007/s00220-018-3176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3176-y

Navigation