Skip to main content
Log in

Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given an obstacle in \({\mathbb{R}^3}\) and a non-zero velocity with small amplitude at the infinity, we construct the unique steady Boltzmann solution flowing around such an obstacle with the prescribed velocity as \({|x|\to \infty}\), which approaches the corresponding Navier–Stokes steady flow, as the mean-free path goes to zero. Furthermore, we establish the error estimate between the Boltzmann solution and its Navier–Stokes approximation. Our method consists of new L6 and L3 estimates in the unbounded exterior domain, as well as an iterative scheme preserving the positivity of the distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd L., Nouri A.: On a Taylor–Couette type bifurcation for the stationary nonlinear Boltzmann equation. J. Stat. Phys. 124, 401–443 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Babenko, K.I.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133), 3–27 (1973); English Transl.: Math. SSSR Sb. 20, 1–25 (1973)

  3. Bardos C., Golse F., Levermore D.: Sur les limites asymptotiques. C.R. Acad. Sci. 309, 727–732 (1989)

    MATH  Google Scholar 

  4. Bardos C., Ukai S.: The classical incompressible Navier–Stokes limit of the Boltzmann equation. Math. Models Methods Appl. Sci. 1, 235 (1991)

    Article  MathSciNet  Google Scholar 

  5. Bobylev A.V., Mossberg E.: On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinet. Relat. Models 1, 521–555 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  Google Scholar 

  7. De Masi A., Esposito R., Lebowitz J.L.: Incompressible Navier–Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)

    Article  MathSciNet  Google Scholar 

  8. Esposito R., Guo Y., Kim C., Marra R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4, 1 (2018). https://doi.org/10.1007/s40818-017-0037-5

  10. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

  11. Finn R.: Estimates at infinity for stationary solutions of the Navier–Stokes equations. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine 3(51), 387–418 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  13. Golse F., Saint-Raymond L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guo Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)

    Article  MathSciNet  Google Scholar 

  15. Guo Y., Jang J.: Global Hilbert expansion for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 299, 469–501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Guo Y., Jang J., Jiang N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63, 337–361 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Hörmander L.: Estimates for translation invariant operators in L p spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  18. Ladyzhenskaya O.: Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, Philadelphia (1969)

    Google Scholar 

  19. Lamb H.: Hydrodynamics, 6th edn. Dover Publications, New York (1945)

    Google Scholar 

  20. Leoni, G.: A First Course in Sobolev Spaces. AMS Graduate Student in Mathematics (2009)

  21. Leray J.: Étude de Diverses Équations Integrales non Linéaires et de Quelques Problèmes que Pose l’ Hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  22. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. Maslova N.: Nonlinear Evolution Equations. World Scientific, Singapore (1993)

    Book  Google Scholar 

  24. Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MathSciNet  Google Scholar 

  25. Mihlin S.G.: On the multipliers of Fourier integrals (Russian). Dokl. Akad. Nauk SSSR 12, 143–155 (1957)

    Google Scholar 

  26. Oseen, C.W.: Über die Stokes’sche formel, und über eine verwandte Aufgabe in der Hydrodynamik. Arkiv för matematik, astronomi och fysik, vi(29) (1910)

  27. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Springer Lecture Notes in Mathematics. Springer, Berlin (2009)

  28. Thomson W.: On ship waves. Inst. Mech. Eng. Proc. 38, 409–434 (1887)

    Article  Google Scholar 

  29. Ukai S., Asano K.: Steady solutions of the Boltzmann equation for a gas flow past an obstacle. I. Existence. Arch. Ration. Mech. Anal. 84, 249–291 (1983)

    Article  MathSciNet  Google Scholar 

  30. Ukai S., Asano K.: Steady solutions of the Boltzmann equation for a gas flow past an obstacle. II. Stability. Publ. Res. Inst. Math. Sci. 22, 1035–1062 (1986)

    Article  MathSciNet  Google Scholar 

  31. Ukai S., Yang T., Zhao H.: Stationary solutions to the exterior problems for the Boltzmann equation. I. Existence. Discrete Contin. Dyn. Syst. 23, 495–520 (2009)

    Article  MathSciNet  Google Scholar 

  32. Ukai S., Yang T., Zhao H.: Exterior Problem for the Boltzmann equation with temperature difference. Commun. Pure Appl. Anal. 8, 473–491 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Wu L., Guo Y.: Geometric correction for diffusive expansion of steady neutron transport equation. Commun. Math. Phys. 336, 1473–1533 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Esposito.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, R., Guo, Y. & Marra, R. Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle. Commun. Math. Phys. 364, 765–823 (2018). https://doi.org/10.1007/s00220-018-3173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3173-1

Navigation