Skip to main content
Log in

The Resolvent Algebra of Non-relativistic Bose Fields: Observables, Dynamics and States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The structure of the gauge invariant (particle number preserving) C*-algebra generated by the resolvents of a non-relativistic Bose field is analyzed. It is shown to form a dense subalgebra of the bounded inverse limit of a directed system of approximately finite dimensional C*-algebras. Based on this observation, it is proven that the closure of the gauge invariant algebra is stable under the dynamics induced by Hamiltonians involving pair potentials. These facts allow to proceed to a description of interacting Bosons in terms of C*-dynamical systems. It is outlined how the present approach leads to simplifications in the construction of infinite bosonic states and sheds new light on topics in many body theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki H.: Mathematical Theory of Quantum Fields. Oxford Univ. Press, Oxford (1999)

    MATH  Google Scholar 

  2. Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arveson W.: The harmonic analysis of automorphismgroups. Proc. Sympos. PureMath. 38(Part 1), 199–269 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchers H.-J.: Translation Group and Particle Representations in Quantum Field Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  5. Bratteli O.: Inductive limits of finite dimensional C*-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  7. Buchholz D.: The resolvent algebra for oscillating lattice systems. Dynamics, ground and equilibrium states. Commun. Math. Phys. 353, 691–716 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Buchholz D.: The resolvent algebra: Ideals and dimension. J. Funct. Anal. 266, 3286–3302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Buchholz D., Grundling H.: The resolvent algebra: a new approach to canonical quantum systems. J. Funct. Anal. 254, 2725–2779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchholz, D., Grundling, H.: Quantum systems and resolvent algebras. In: Blanchard, P., Fröhlich, J. (eds.) The Message of Quantum Science—Attempts Towards a Synthesis, Lect. Notes Phys., vol. 899, pp. 33–45. Springer, Berlin (2015)

  12. Buchholz D., Porrmann M., Stein U.: Dirac versus Wigner. Towards a universal particle concept in local quantum field theory. Phys. Lett. B 267, 377–381 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cornean H.D., Dereziński J., Ziń P.: On the infimum of the energy momentum spectrum of a homogenous Bose gas. J. Math. Phys. 50, 062103 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dereziński J., Gerard C.: Scattering Theory of Classical and Quantum N-Particle Systems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  15. Dybalski W.: Continuous spectrum of automorphism groups and the infraparticle problem. Commun. Math. Phys. 300, 273–299 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fannes M., Verbeure A.F.: On the time evolution automorphisms of the CCR-algebra for quantum mechanics. Commun. Math. Phys. 35, 257–264 (1974)

    Article  ADS  Google Scholar 

  17. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lieb E.H., Seiringer R., Solovey J.P., Yngvason J.: The Mathematics of the Bose Gas and its Condensation. Birkhuser, Basel (2005)

    MATH  Google Scholar 

  19. Narnhofer H., Thirring W.: Galilei invariant quantum field theories with pair interactions—a review. Int. J. Mod. Phys. A 6, 2937–2970 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. Phillips C.N.: Inverse limits of C*-algebras. J. Oper. Theory 19, 159–195 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Pitaevskii L., Stringari S.: Bose–Einstein Condensation and Superfluidity. Oxford Univ.Press, Oxford (2016)

    Book  MATH  Google Scholar 

  22. Reed M., Simon B.: Functional Analysis I. Acacemic Press, New York (1972)

    MATH  Google Scholar 

  23. Verbeure A.F.: Many-Body Boson Systems. Springer, London (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Buchholz.

Additional information

Communicated by C. Schweigert

Dedicated to Klaus Fredenhagen on his seventieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, D. The Resolvent Algebra of Non-relativistic Bose Fields: Observables, Dynamics and States. Commun. Math. Phys. 362, 949–981 (2018). https://doi.org/10.1007/s00220-018-3144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3144-6

Navigation