Skip to main content
Log in

Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Burchard A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman M., Duminil-Copin H., Sidoravicius V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334(2), 719–742 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bass, R.F.: Probabilistic Techniques in Analysis. Probability and Its Applications (New York). Springer-Verlag, New York (1995)

  4. Bolthausen E., Deuschel J.D., Giacomin G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4), 1670–1692 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brascamp H.J., Lieb E.H.: On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MATH  Google Scholar 

  6. Burdzy, K.: My favorite open problems. www.math.washington.edu/~burdzy/open_mathjax.php.

  7. Carleson L.: On the distortion of sets on a Jordan curve under conformal mapping. Duke Math. J. 40, 547–559 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Černý J., Popov S.: On the internal distance in the interlacement set. Electron. J. Probab. 17(29), 25 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Chang Y.: Supercritical loop percolation on \({\mathbb {Z}^d}\) for \({d \geqslant 3}\). Stoch. Process. Appl. 127(10), 3159–3189 (2017) arXiv:1504.07906

    Article  MATH  Google Scholar 

  10. Chang, Y., Sapozhnikov, A.: Phase transition in loop percolation. Probab. Theory Relat. Fields 164 (2016)

  11. Chayes, L.: Aspects of the fractal percolation process. In: Fractal Geometry and Stochastics (Finsterbergen, 1994), Progr. Probab., vol. 37, pp. 113–143. Birkhäuser, Basel (1995)

  12. Chayes L.: On the length of the shortest crossing in the super-critical phase of Mandelbrot’s percolation process. Stoch. Process. Appl. 61(1), 25–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damron, M., Hanson, J., Sosoe, P.: Strict inequality for the chemical distance exponent in two-dimensional critical percolation. Preprint, arXiv:1708.03643

  14. Damron, M., Hanson, J., Sosoe, P.: On the chemical distance in critical percolation. Electron. J. Probab. 22, Paper No. 75 (2017)

  15. Ding J.: Asymptotics of cover times via Gaussian free fields: bounded-degree graphs and general trees. Ann. Probab. 42(2), 464–496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, J., Dunlap, A.: Liouville first passage percolation: subsequential scaling limits at high temperatures. Preprint, arXiv:1605.04011

  17. Ding, J., Goswami, S.: First passage percolation on the exponential of two-dimensional branching random walk. Accepted by Electron. Commun. Probab., arXiv:1511.06932

  18. Ding, J., Goswami, S.: Upper bounds on liouville first passage percolation and Watabiki’s prediction. Preprint, arXiv:1610.09998

  19. Ding, J., Zhang, F.: Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields. Probab. Theory Relat. Fields (to appear)

  20. Drewitz A., Ráth B., Sapozhnikov A.: On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys. 55(8), 083,307, 30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dunlop F., Magnen J., Rivasseau V., Roche P.: Pinning of an interface by a weak potential. J. Stat. Phys. 66(1), 71–98 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Duplantier B., Lawler G.F., Le Gall J.F., Lyons T.J.: The geometry of the Brownian curve. Bull. Sci. Math. 117(1), 91–106 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Fortuin C.M., Kasteleyn P.W., Ginibre J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Giacomin, G.: Aspects of statistical mechanics of random surfaces. Notes of lectures given at IHP, fall (2001)

  25. Kesten H.: Hitting probabilities of random walks on Z d. Stoch. Process. Appl. 25(2), 165–184 (1987)

    Article  MATH  Google Scholar 

  26. Lawler, G.F.: Topics in loop measures and the loop-erased walk. Preprint, arXiv:1709.07531

  27. Lawler G.F.: Intersections of Random Walks. Probability and its Applications.. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  28. Lawler G.F.: A discrete analogue of a theorem of Makarov. Comb. Probab. Comput. 2(2), 181–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lawler G.F., Limic V.: The Beurling estimate for a class of random walks. Electron. J. Probab. 9(27), 846–861 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

  31. Lawler G.F., Trujillo Ferreras J.A.: Random walk loop soup. Trans. Am. Math. Soc. 359(2), 767–787 (2007) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lawler G.F., Werner W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Le Jan, Y.: Markov Paths, Loops and Fields. Lecture Notes in Mathematics, vol. 2026. Springer, Heidelberg (2011). Lectures from the 38th Probability Summer School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-Flour [Saint-Flour Probability Summer School]

  34. Lupu T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lupu T.: Loop percolation on discrete half-plane. Electron. Commun. Probab. 21, 9 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Lupu, T., Werner, W.: The random pseudo-metric on a graph defined via the zero-set of the Gaussian free field on its metric graph. Probab. Theory Relat. Fields (to appear)

  37. Lupu T., Werner W.: A note on ising random currents, Ising-FK, loop-soups and the Gaussian free field. Electron. Commun. Probab. 21, 7 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Makarov N.G.: On the distortion of boundary sets under conformal mappings. Proc. Lond. Math. Soc. (3) 51(2), 369–384 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge (2006)

  40. McMillan J.E., Piranian G.: Compression and expansion of boundary sets. Duke Math. J. 40, 599–605 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  41. Orzechowski M.E.: A lower bound on the box-counting dimension of crossings in fractal percolation. Stoch. Process. Appl. 74(1), 53–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Preston C.J.: A generalization of the FKG inequalities. Commun. Math. Phys. 36, 233–241 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  43. Rodriguez P.F., Sznitman A.S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Rosen, J.: Lectures on isomorphism theorems. Preprint, arXiv:1407.1559

  45. Sheffield S., Werner W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. of Math. (2) 176(3), 1827–1917 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sidoravicius V., Sznitman A.S.: Percolation for the vacant set of random interlacements. Commun. Pure Appl. Math. 62(6), 831–858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg (1976)

  48. Sznitman A.S.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sznitman, A.S.: Topics in Occupation Times and Gaussian Free Fields. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2012)

  50. Sznitman A.S.: Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Jpn. 67(4), 1801–1843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Werner, W.: On the spatial Markov property of soups of unoriented and oriented loops. In: Séminaire de Probabilités XLVIII, Lecture Notes in Mathematics, vol. 2168, pp. 481–503. Springer, Cham (2016)

  52. Zhai, A.: Exponential concentration of cover times (2014). Preprint, arXiv:1407.7617

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ding.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Li, L. Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups. Commun. Math. Phys. 360, 523–553 (2018). https://doi.org/10.1007/s00220-018-3140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3140-x

Navigation