Skip to main content
Log in

Sedimentation of Inertialess Particles in Stokes Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaire G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batchelor G.K.: An Introduction to Fluid Dynamics, Paperback. Cambridge Mathematical Library, pp. xii+229.. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Boudin L., Desvillettes L., Grandmont C., Moussa A.: Global existence of solutions for the coupled Vlasov and Navier–Stokes equations. Differ. Integral Equ. 22(11-12), 1247–1271 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Carrillo J.A., Goudon T.: Stability and asymptotic analysis of a fluid–particle interaction model. Commun. Partial Differ. Equ. 31(7-9), 1349–1379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desvillettes L., Golse F., Ricci V.: The mean-field limit for solid particles in a Navier–Stokes flow. J. Stat. Phys. 131(5), 941–967 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Einstein A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik 19, 289–306 (1906)

    Article  ADS  MATH  Google Scholar 

  9. Feireisl E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003) Dedicated to Philippe Bénilan

    Article  MathSciNet  MATH  Google Scholar 

  10. Feuillebois F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139, 145–171 (1984)

    Article  ADS  MATH  Google Scholar 

  11. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems: Springer Monographs in Mathematics. 2nd edn., pp. xiv+1018. Springer, New York (2011)

  12. Goudon T., Jabin P.E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guazzelli E., Morris J.F.: A Physical Introduction to Suspension Dynamics. Cambridge Texts in Applied Mathematics, pp. xii+229.. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  14. Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Jpn. J. Ind. Appl. Math. 15(1), 51–74 (1998)

  15. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Vol. 1, Springer, Berlin (2012)

  16. Haines B.M., Mazzucato A.L.: A proof of Einstein’s effective viscosity for a dilute suspension of spheres. SIAM J. Math. Anal. 44(3), 2120–2145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Höfer, R.M., Velázquez, J.J.L.: The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains. Arch. Ration. Mech. Anal. 227(3), 1165–1221 (2018)

  18. Höfer, R.M.: The inertialess limit of particle sedimentation modeled by the Vlasov–Stokes equations (2018). arXiv:1801.02333

  19. Jabin P.E., Otto F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250(2), 415–432 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kojima M., Hinch E., Acrivos A.: The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids (1958-1988) 27(1), 19–32 (1984)

    Article  Google Scholar 

  21. Luke J.H.: Decay of velocity fluctuations in a stably stratified suspension. Phys. Fluids (1994-present) 12(6), 1619–1621 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Machu G., Meile W., Nitsche L.C., Schaflinger U.: Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299–336 (2001)

    Article  ADS  MATH  Google Scholar 

  23. Metzger B., Nicolas M., Guazzelli E.: Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283–301 (2007)

    Article  ADS  MATH  Google Scholar 

  24. Marqusee J., Ross J.: Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80(1), 536–543 (1984)

    Article  ADS  Google Scholar 

  25. Maremonti, P., Russo, R., Starita, G.: On the Stokes equations: the boundary value problem. In: Advances in Fluid Dynamics. vol. 4, Quad. Mat. Dept. Math., Seconda Univ. Napoli, Caserta, pp. 69–140 (1999)

  26. Niethammer B., Otto F.: Ostwald ripening: the screening length revisited. Calc. Var. Partial Differ. Equ. 13(1), 33–68 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niethammer B., Velázquez J.J.L.: Homogenization in coarsening systems. I. Deterministic case. Math. Models Methods Appl. Sci. 14(8), 1211–1233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niethammer B., Velázquez J.J.L.: Screening in interacting particle systems. Arch. Ration. Mech. Anal. 180(3), 493–506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Powell R., Mason S.: Dispersion by laminar flow. AIChE J. 28(2), 286–293 (1982)

    Article  Google Scholar 

  30. San Martín J.A., Starovoitov V., Tucsnak M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Höfer.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höfer, R.M. Sedimentation of Inertialess Particles in Stokes Flows. Commun. Math. Phys. 360, 55–101 (2018). https://doi.org/10.1007/s00220-018-3131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3131-y

Navigation