Sedimentation of Inertialess Particles in Stokes Flows

Article
  • 15 Downloads

Abstract

We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. All90a.
    Allaire G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. All90b.
    Allaire G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261–298 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. Bat99.
    Batchelor G.K.: An Introduction to Fluid Dynamics, Paperback. Cambridge Mathematical Library, pp. xii+229.. Cambridge University Press, Cambridge (1999)Google Scholar
  4. BDGM09.
    Boudin L., Desvillettes L., Grandmont C., Moussa A.: Global existence of solutions for the coupled Vlasov and Navier–Stokes equations. Differ. Integral Equ. 22(11-12), 1247–1271 (2009)MathSciNetMATHGoogle Scholar
  5. CG06.
    Carrillo J.A., Goudon T.: Stability and asymptotic analysis of a fluid–particle interaction model. Commun. Partial Differ. Equ. 31(7-9), 1349–1379 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. DE99.
    Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. DGR08.
    Desvillettes L., Golse F., Ricci V.: The mean-field limit for solid particles in a Navier–Stokes flow. J. Stat. Phys. 131(5), 941–967 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. Ein06.
    Einstein A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik 19, 289–306 (1906)ADSCrossRefMATHGoogle Scholar
  9. Fei03.
    Feireisl E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003) Dedicated to Philippe BénilanMathSciNetCrossRefMATHGoogle Scholar
  10. Feu84.
    Feuillebois F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139, 145–171 (1984)ADSCrossRefMATHGoogle Scholar
  11. Gal11.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems: Springer Monographs in Mathematics. 2nd edn., pp. xiv+1018. Springer, New York (2011)Google Scholar
  12. GJV04.
    Goudon T., Jabin P.E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. GM12.
    Guazzelli E., Morris J.F.: A Physical Introduction to Suspension Dynamics. Cambridge Texts in Applied Mathematics, pp. xii+229.. Cambridge University Press, Cambridge (2012)Google Scholar
  14. Ham98.
    Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Jpn. J. Ind. Appl. Math. 15(1), 51–74 (1998)Google Scholar
  15. HB12.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Vol. 1, Springer, Berlin (2012)Google Scholar
  16. HM12.
    Haines B.M., Mazzucato A.L.: A proof of Einstein’s effective viscosity for a dilute suspension of spheres. SIAM J. Math. Anal. 44(3), 2120–2145 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. HV17.
    Höfer, R.M., Velázquez, J.J.L.: The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains. Arch. Ration. Mech. Anal. 227(3), 1165–1221 (2018)Google Scholar
  18. Ho18.
    Höfer, R.M.: The inertialess limit of particle sedimentation modeled by the Vlasov–Stokes equations (2018). arXiv:1801.02333
  19. JO04.
    Jabin P.E., Otto F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250(2), 415–432 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. KHA84.
    Kojima M., Hinch E., Acrivos A.: The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids (1958-1988) 27(1), 19–32 (1984)CrossRefGoogle Scholar
  21. Luk00.
    Luke J.H.: Decay of velocity fluctuations in a stably stratified suspension. Phys. Fluids (1994-present) 12(6), 1619–1621 (2000)ADSCrossRefMATHGoogle Scholar
  22. MMNS01.
    Machu G., Meile W., Nitsche L.C., Schaflinger U.: Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299–336 (2001)ADSCrossRefMATHGoogle Scholar
  23. MNG07.
    Metzger B., Nicolas M., Guazzelli E.: Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283–301 (2007)ADSCrossRefMATHGoogle Scholar
  24. MR84.
    Marqusee J., Ross J.: Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80(1), 536–543 (1984)ADSCrossRefGoogle Scholar
  25. MRS99.
    Maremonti, P., Russo, R., Starita, G.: On the Stokes equations: the boundary value problem. In: Advances in Fluid Dynamics. vol. 4, Quad. Mat. Dept. Math., Seconda Univ. Napoli, Caserta, pp. 69–140 (1999)Google Scholar
  26. NO01.
    Niethammer B., Otto F.: Ostwald ripening: the screening length revisited. Calc. Var. Partial Differ. Equ. 13(1), 33–68 (2001)MathSciNetCrossRefMATHGoogle Scholar
  27. NV04.
    Niethammer B., Velázquez J.J.L.: Homogenization in coarsening systems. I. Deterministic case. Math. Models Methods Appl. Sci. 14(8), 1211–1233 (2004)MathSciNetCrossRefMATHGoogle Scholar
  28. NV06.
    Niethammer B., Velázquez J.J.L.: Screening in interacting particle systems. Arch. Ration. Mech. Anal. 180(3), 493–506 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. PM82.
    Powell R., Mason S.: Dispersion by laminar flow. AIChE J. 28(2), 286–293 (1982)CrossRefGoogle Scholar
  30. SST02.
    San Martín J.A., Starovoitov V., Tucsnak M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute For Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations