Skip to main content
Log in

Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge–Ampère Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge–Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio L., Colombo M., De Philippis G., Figalli A.: Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case. Commun. Partial Differ. Equ. 37(12), 2209–2227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benamou J.D., Brenier Y.: Weak existence for the semigeostrophic equations formulated as a coupled Monge–Ampère/transport problem. SIAM J. Appl. Math. 58(5), 1450–1461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli L.A.: Interior \({W^{2,p}}\) estimates for solutions to the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli L.A.: Some regularity properties of solutions of Monge–Ampère equation. Commun. Pure Appl. Math. 44(8-9), 965–969 (1991)

    Article  MATH  Google Scholar 

  6. Caffarelli L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.A.: Boundary regularity of maps with convex potentials. Commun. Pure Appl. Math. 45(9), 1141–1151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L.A., Gutiérrez C.E.: Properties of the Solutions of the Linearized Monge–Ampère equation. Am. J. Math. 119(2), 423–465 (1997)

    Article  MATH  Google Scholar 

  9. Cordero-Erausquin D.: Sur le transport de mesures périodiques. C. R. Acad. Sci. Paris Sér. I Math. 329(3), 199–202 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Cullen M.A.: Mathematical Theory of Large-Scale Atmosphere/Ocean Flow. Imperial College Press, London (2006)

    Book  Google Scholar 

  11. Cullen M., Feldman M.: Lagrangian solutions of semigeostrophic equations in physical space. SIAM J. Math. Anal. 37(5), 1371–1395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cullen M., Gangbo W.: A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Ration. Mech. Anal. 156(3), 241–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Philippis G., Figalli A.: \({W^{2,1}}\) regularity for solutions of the Monge–Ampère equation. Invent. Math. 192(1), 55–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Philippis G., Figalli A., Savin O.: A note on interior \({W^{2, 1+\varepsilon}}\) estimates for the Monge–Ampère equation. Math. Ann. 357, 11–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Figalli A.: The Monge–Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2017)

    Book  MATH  Google Scholar 

  16. Figalli, A.: Global Existence for the Semigeostrophic Equations via Sobolev Estimates for Monge–Ampère, CIME Lecture Notes. Springer (to appear)

  17. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)

    MATH  Google Scholar 

  18. Grüter M., Widman K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37(3), 303–342 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gutiérrez C.E.: The Monge–Ampère Equation. Progress in Nonlinear Differential Equations and their Applications, vol. 44. Birkhaüser, Boston (2001)

    Google Scholar 

  20. Han, Q., Lin, F.H.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 2nd edn., vol. 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2011)

  21. Le N.Q.: Remarks on the Green’s function of the linearized Monge–Ampère operator. Manuscr. Math. 149(1), 45–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le N.Q.: Boundary Harnack inequality for the linearized Monge–Ampère equations and applications. Trans. Am. Math. Soc. 369(9), 6583–6611 (2017)

    Article  MATH  Google Scholar 

  23. Loeper G.: On the regularity of the polar factorization for time dependent maps. Calc. Var. Partial Differ. Equ. 22(3), 343–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loeper G.: A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system. SIAM J. Math. Anal. 38(3), 795–823 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maldonado D.: On the \({W^{2,1+\epsilon}}\) -estimates for the Monge–Ampère equation and related real analysis. Calc. Var. Partial Differ. Equ. 50, 94–114 (2014)

    Article  Google Scholar 

  26. McCann R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murthy M.K.V., Stampacchia G.: Boundary value problems for some degenerate-elliptic operators. Ann. Mat. Pura Appl. 80, 1–122 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmidt T.: \({W^{2, 1 +\varepsilon}}\) estimates for the Monge–Ampère equation. Adv. Math. 240, 672–689 (2013)

    Article  MathSciNet  Google Scholar 

  29. Tian G.J., Wang X.J.: A class of Sobolev type inequalities. Methods Appl. Anal. 15(2), 263–276 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Trudinger N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa (3) 27, 265–308 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Wang X.J.: Some counterexamples to the regularity of Monge–Ampère equations. Proc. Am. Math. Soc. 123(3), 841–845 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Q. Le.

Additional information

Communicated by L. Caffarelli

The research of the author was supported in part by NSF grant DMS-1500400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, N.Q. Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge–Ampère Equations. Commun. Math. Phys. 360, 271–305 (2018). https://doi.org/10.1007/s00220-018-3125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3125-9

Navigation