Skip to main content
Log in

On the Occurrence of Mass Inflation for the Einstein–Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the spherically symmetric characteristic initial data problem for the Einstein–Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner–Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in \({L^2_{{\rm loc}}}\), thus violating the Christodoulou–Chruściel version of strong cosmic censorship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brady P., Chambers C., Krivan W., Laguna P.: Telling tails in the presence of a cosmological constant. Phys. Rev. D 55, 7538–7545 (1986)

    Article  ADS  Google Scholar 

  2. Brady P., Moss I., Myers R.: Cosmic censorship: as strong as ever. Phys. Rev. Lett. 80, 3432–3435 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cardoso V., Costa J., Destounis K., Hintz P., Jansen A.: Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120, 031103 (2018)

    Article  ADS  Google Scholar 

  4. Choquet-Bruhat Y., Geroch R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Christodoulou D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Christodoulou D.: On the global initial value problem and the issue of singularities. Class. Quantum Grav. 16A, 23–35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christodoulou, D.: The formation of black holes in general relativity. EMS Monographs in Mathematics (2009)

  8. Chruściel, P.: On uniqueness in the large of solutions of Einstein’s equations (“strong cosmic censorship”). Proceedings of the Centre for Mathematical Analysis, Australian National University 27 (1991)

  9. Costa, J., Franzen, A.: Bounded energy waves on the black hole interior of Reissner–Nordström–de Sitter. Ann. Henri Poincaré 18, 3371–3398 (2017)

  10. Costa J., Girão P., Natário J., Silva J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1. Well posedness and breakdown criterion. Class Quantum Grav. 32, 015017 (2015)

    Article  ADS  MATH  Google Scholar 

  11. Costa J., Girão P., Natário J., Silva J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2. Structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339, 903–947 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Costa J., Girão P., Natário J., Silva J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 3. Mass inflation and extendibility of the solutions. Ann. PDE 3, 8 (2017)

    Article  MathSciNet  Google Scholar 

  13. Dafermos M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dafermos M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 445–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dafermos M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the C 0-stability of the Kerr Cauchy horizon. arXiv:1710.01722

  17. Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a selfgravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes. arXiv:0709.2766

  19. Dyatlov S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335, 1445–1485 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fourès-Bruhat Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gajic, D., Luk, J.: The interior of dynamical extremal black holes in spherical symmetry. arXiv:1709.09137

  22. Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes. arXiv:1512.08004

  23. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. arXiv:1606.04014

  24. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region. arXiv:1702.05715

  25. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II. The exterior of the black hole region. arXiv:1702.05716

  26. Penrose, R.: Structure of space–time. In: DeWitt, C., Wheeler, J. (eds) Battelle Rencontres, 1967 Lectures in Mathematics and Physics, pp. 121–235. Benjamin, New York (1968)

  27. Penrose, R.: Singularities and time–asymmetry. In: Hawking, S., Israel, W. (eds) General Relativity, an Einstein Century Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)

  28. Poisson E., Israel W.: Inner–horizon instability and mass inflation in black holes. Phys. Rev. Lett. 63, 1663–1666 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  29. Price R.: Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations. Phys. Rev. D 5, 2419–2438 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ringström, H.: The Cauchy problem in general relativity. Lectures in Mathematics and Physics, European Mathematical Society (2009)

  31. Sbierski, J.: The C 0-inextendibility of the Schwarzschild space–time and the spacelike diameter in Lorentzian geometry. arXiv:1507.00601

  32. Simpson M., Penrose R.: Internal instability in a Reissner–Nordstrom black hole. Int. J. Theor. Phys. 7, 183–197 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Drumond Silva.

Additional information

Communicated by P. Chrusciel

This work was partially supported by FCT/Portugal through UID/MAT/04459/2013 and Grant (GPSEinstein) PTDC/MAT-ANA/1275/2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.L., Girão, P.M., Natário, J. et al. On the Occurrence of Mass Inflation for the Einstein–Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law. Commun. Math. Phys. 361, 289–341 (2018). https://doi.org/10.1007/s00220-018-3122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3122-z

Navigation