Advertisement

Communications in Mathematical Physics

, Volume 360, Issue 2, pp 715–726 | Cite as

Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

  • N. J. B. Aza
  • J.-B. Bru
  • W. de Siqueira Pedra
Article
  • 107 Downloads

Abstract

We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903–931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basko D.M., Aleiner I.L., Altshuler B.L.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Chulaevsky V., Suhov Y.M.: Eigenfunctions in a two-particle Anderson tight binding model. Commun. Math. Phys. 289, 701–723 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aizenman M., Warzel S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290(3), 903–934 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sims, R., Warzel, S.: Decay of determinantal and Pfaffian correlation functionals in one-dimensional lattices. Commun. Math. Phys. 347, 903–931 (2016); Sims, R., Warzel, S.: Correction to: Decay of determinantal and Pfaffian correlation functionals in one-dimensional lattices. Commun. Math. Phys. In Review (2018)Google Scholar
  5. 5.
    Abdul-Rahmana H., Stolz G.: A uniform area law for the entanglement of eigenstates in the disordered XY chain. J. Math. Phys. 56, 121901 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Seiringer R., Warzel S.: Decay of correlations and absence of superfluidity in the disordered Tonks–Girardeau gas. New J. Phys. 18, 035002 (2016) (14pp)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gebert M., Lemm M.: On polynomial Lieb–Robinson bounds for the XY chain in a decaying random field. J. Stat. Phys. 164, 667–679 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Abdul-Rahman H., Nachtergaele B., Sims R., Stolz G.: Entanglement dynamics of disordered quantum XY chains. Lett. Math. Phys. 106((5), 649–674 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Stolz G.: Many-body localization for disordered bosons. New J. Phys. 18, 031002 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Mavi, R.: Localization for the Ising model in a transverse field with generic aperiodic disorder. arXiv:1605.06514 (2016)
  11. 11.
    Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Localization properties of the disordered XY spin chain. Ann. Phys. (Berl.) 529, 1600280 (2017)Google Scholar
  12. 12.
    Beaud, V., Warzel, S.: Low-energy Fock-space localization for attractive hard-core particles in disorder. arXiv:1703.02465 (2017)
  13. 13.
    Le Doussal, P., Majumdar, S.N., Schehr, G.: Periodic airy process and equilibrium dynamics of edge fermions in a trap. arXiv:1702.06931 (2017)
  14. 14.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. II, 2nd edn. Springer, New York (1996)Google Scholar
  15. 15.
    Aizenman, M., Warzel, S.: Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2016)Google Scholar
  16. 16.
    Bru, J.-B., de Siqueira Pedra, W.: Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory. M3AS Math. Models Methods Appl. Sci. 12(27), 1963–1992 (2017)Google Scholar
  17. 17.
    Araki H., Masuda T.: Positive cones and L p-spaces for von Neumann algebras. Publ. RIMS Kyoto Univ. 18, 339–411 (1982)zbMATHGoogle Scholar
  18. 18.
    Evans, D.E., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras, Oxford Mathematical Monographs. Oxford University Press, Oxford (1998)Google Scholar
  19. 19.
    Feldman, J., Knorrer, H., Trubowitz, E.: Fermionic Functional Integrals and the Renormalization Group, CRM Monograph Series, vol. 16. American Mathematical Society, Providence (2002)Google Scholar
  20. 20.
    Simon, B.: Convexity: An Analytic Viewpoint, Cambridge Tracts in Mathematics, vol. 187. Cambridge University Press, Cambridge (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. J. B. Aza
    • 1
  • J.-B. Bru
    • 2
    • 3
    • 4
  • W. de Siqueira Pedra
    • 1
  1. 1.Institute of Physics of the University of São PauloSão PauloBrazil
  2. 2.Departamento de Matemáticas, Facultad de Ciencia y TecnologíaUniversidad del País VascoBilbaoSpain
  3. 3.BCAM - Basque Center for Applied MathematicsBilbaoSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations