Active Spanning Trees with Bending Energy on Planar Maps and SLE-Decorated Liouville Quantum Gravity for \({\kappa > 8}\)

  • Ewain Gwynne
  • Adrien Kassel
  • Jason Miller
  • David B. Wilson


We introduce a two-parameter family of probability measures on spanning trees of a planar map. One of the parameters controls the activity of the spanning tree and the other is a measure of its bending energy. When the bending parameter is 1, we recover the active spanning tree model, which is closely related to the critical Fortuin–Kasteleyn model. A random planar map decorated by a spanning tree sampled from our model can be encoded by means of a generalized version of Sheffield’s hamburger-cheeseburger bijection. Using this encoding, we prove that for a range of parameter values (including the ones corresponding to maps decorated by an active spanning tree), the infinite-volume limit of spanning-tree-decorated planar maps sampled from our model converges in the peanosphere sense, upon rescaling, to an \({{\rm SLE}_\kappa}\)-decorated γ-Liouville quantum cone with \({\kappa > 8}\) and \({\gamma = 4/ \sqrt\kappa \in (0,\sqrt 2)}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BBG12.
    Borot G., Bouttier J., Guitter E.: More on the O(n) model on random maps via nested loops: loops with bending energy. J. Phys. A 45(27), 275206 (2012) arXiv:1202.5521 MathSciNetCrossRefMATHGoogle Scholar
  2. Ber08a.
    Bernardi O.: A characterization of the Tutte polynomial via combinatorial embeddings. Ann. Comb. 12(2), 139–153 (2008) arXiv:math/0608057 MathSciNetCrossRefMATHGoogle Scholar
  3. Ber08b.
    Bernardi, O.: Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings. Electron. J. Combin. 15(1), Research Paper 109 (2008). arXiv:math/0612003
  4. BLR17.
    Berestycki N., Laslier B.T., Ray G.: Critical exponents on Fortuin–Kasteleyn weighted planar maps. Comm. Math. Phys. 355(2), 427–462 (2017) arXiv:1502.00450 ADSMathSciNetCrossRefMATHGoogle Scholar
  5. BS01.
    Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23) (electronic) (2001). arXiv:math/0011019
  6. Che17.
    Chen L.: Basic properties of the infinite critical-FK random map. Ann. Inst. Henri Poincaré D 4(3), 245–271 (2017) arXiv:1502.01013 MathSciNetCrossRefMATHGoogle Scholar
  7. Cou14.
    Courtiel, J.: A general notion the Tutte polynomial (2014). arXiv:1412.2081
  8. DGK00.
    Di Francesco P., Guitter E., Kristjansen C.: Integrable 2D Lorentzian gravity and random walks. Nuclear Phys. B 567(3), 515–553 (2000) arXiv:hep-th/9907084 ADSMathSciNetCrossRefMATHGoogle Scholar
  9. DMS14.
    Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees (2014). arXiv:1409.7055
  10. Eva85.
    Evans S.N.: On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge Philos. Soc. 98(2), 343–353 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. FK72.
    Fortuin C.M., Kasteleyn P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)ADSMathSciNetCrossRefGoogle Scholar
  12. GHMS17.
    Gwynne E., Holden N., Miller J., Sun X.: Brownian motion correlation in the peanosphere for \({\kappa > 8}\). Ann. Inst. Henri Poincaré Probab. Stat. 53(4), 1866–1889 (2017) arXiv:1510.04687 MathSciNetCrossRefGoogle Scholar
  13. GHS16.
    Gwynne, E., Holden, N., Sun, X.: Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense (2016). arXiv:1603.01194
  14. GM17.
    Gwynne, E., Miller J.: Convergence of the topology of critical Fortuin-Kasteleyn planar maps to that of \({CLE_\kappa}\) on a Liouville quantum surface. In: preparation (2017)Google Scholar
  15. GMS17a.
    Gwynne, E., Mao, C., Sun X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: cone times. Annales de l’Institut Henri Poincaré (2017). arXiv:1502.00546
  16. GMS17b.
    Gwynne, E., Miller, J., Sheffield, S.: The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity (2017). arXiv:1705.11161
  17. GS15.
    Gwynne, E., Sun, X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map III: finite volume case. Electron. J. Probab. 22(45), 1–56 (2017) (October 2015). arXiv:1510.06346
  18. GS17.
    Gwynne, E., Sun, X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent. Electron. J. Probab. 22:Paper No. 45, 1–56 (2017). arXiv:1505.03375
  19. KMSW15.
    Kenyon, R., Miller, J., Sheffield, S., Wilson, D.B.: Bipolar orientations on planar maps and SLE 12 (2015). arXiv:1511.04068
  20. KS15.
    Kemppainen, A., Smirnov, S.: Conformal invariance of boundary touching loops of FK Ising model (2015). arXiv:1509.08858
  21. KW16.
    Kassel A., Wilson D.B.: Active spanning trees and Schramm–Loewner evolution. Phys. Rev. E 93, 062121 (2016) arXiv:1512.09122 ADSCrossRefGoogle Scholar
  22. Le13.
    Le Gall J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013) arXiv:1105.4842 MathSciNetCrossRefMATHGoogle Scholar
  23. Le14.
    Le Gall, J.-F.: Random geometry on the sphere. In: Proceedings of the ICM (2014). arXiv:1403.7943
  24. LL10.
    Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction, Volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
  25. LP16.
    Lyons, R., Peres, Y.: Probability on Trees and Networks, Volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York (2016).
  26. LSW04.
    Lawler F.G, Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004) arXiv:math/0112234 MathSciNetCrossRefMATHGoogle Scholar
  27. LSW17.
    Li, Y., Sun, X., Watson, S.S.: Schnyder woods, SLE(16), and Liouville quantum gravity (2017). arXiv:1705.03573
  28. Mie09.
    Miermont, G.: Random maps and their scaling limits. In: Fractal Geometry and Stochastics IV, Volume 61 of Progress in Probability, pp. 197–224. Birkhäuser Verlag, Basel (2009)Google Scholar
  29. Mie13.
    Miermont G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013) arXiv:1104.1606 MathSciNetCrossRefMATHGoogle Scholar
  30. MS15a.
    Miller, J.,Sheffield S.: An axiomatic characterization of the Brownian map (2015). arXiv:1506.03806
  31. MS15b.
    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric (2015). arXiv:1507.00719
  32. MS15c.
    Miller, J., Sheffield, S.: Liouville quantum gravity spheres as matings of finite-diameter trees (2015). arXiv:1506.03804
  33. MS16a.
    Miller J., Sheffield S.: Imaginary geometry III: reversibility of \({SLE_\kappa}\) for \({\kappa \in (4,8)}\). Ann. Math. 184(2), 455–486 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. MS16b.
    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding (2016). arXiv:1605.03563
  35. MS16c.
    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined (2016). arXiv:1608.05391
  36. MS16d.
    Miller J., Sheffield S.: Imaginary geometry I: interacting SLEs. Probab. Theory Relat. Fields 164(3-4), 553–705 (2016) arXiv:1201.1496 MathSciNetCrossRefMATHGoogle Scholar
  37. MS16e.
    Miller J., Sheffield S.: Imaginary geometry II: Reversibility of \({SLE_\kappa(\rho_1;\rho_2)}\) for \({\kappa \in (0,4)}\). Ann. Probab. 44(3), 1647–1722 (2016)MathSciNetCrossRefMATHGoogle Scholar
  38. MS16f.
    Miller J., Sheffield S.: Quantum Loewner evolution. Duke Math. J. 165(17), 3241–3378 (2016) arXiv:1312.5745 MathSciNetCrossRefMATHGoogle Scholar
  39. MS17.
    Miller J., Sheffield S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Relat. Fields 169(3-4), 729–869 (2017) arXiv:1302.4738 MathSciNetCrossRefMATHGoogle Scholar
  40. Mul67.
    Mullin R.C.: On the enumeration of tree-rooted maps. Can. J. Math. 19, 174–183 (1967)MathSciNetCrossRefMATHGoogle Scholar
  41. RS05.
    Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. (2) 161(2), 883–924 (2005) arXiv:math/0106036 MathSciNetCrossRefMATHGoogle Scholar
  42. Sch00.
    Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000) arXiv:math/9904022 MathSciNetCrossRefMATHGoogle Scholar
  43. She09.
    Sheffield S.: Exploration trees and conformal loop ensembles.. Duke Math J. 147(1), 79–129 (2009) arXiv:math/0609167 MathSciNetCrossRefMATHGoogle Scholar
  44. She16.
    Sheffield S.: Quantum gravity and inventory accumulation. Ann. Probab. 44(6), 3804–3848 (2016) arXiv:1108.2241 MathSciNetCrossRefMATHGoogle Scholar
  45. Shi85.
    Shimura M.: Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ. 25(3), 433–443 (1985)MathSciNetCrossRefMATHGoogle Scholar
  46. Whi02.
    Whitt, W.: Stochastic-Process Limits. Springer Series in Operations Research. Springer-Verlag, New York (2002). An introduction to stochastic-process limits and their application to queuesGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ewain Gwynne
    • 1
  • Adrien Kassel
    • 2
  • Jason Miller
    • 3
  • David B. Wilson
    • 4
  1. 1.MITCambridgeUSA
  2. 2.ENS LyonLyonFrance
  3. 3.University of CambridgeCambridgeUK
  4. 4.Microsoft ResearchRedmondUSA

Personalised recommendations