Skip to main content
Log in

The Full Ward-Takahashi Identity for Colored Tensor Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 01 February 2020

This article has been updated

Abstract

Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank-D interactions including, but not restricted to, all melonic \({\varphi^4}\) -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large-N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge-D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 \({\varphi^4}\) -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 01 February 2020

    The author wishes to rectify some oversights and, mainly, to amend an erroneous term.

References

  1. Ambjørn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A6, 1133–1146 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Geloun, J.B., Ramgoolam, S.: Counting tensor model observables and branched covers of the 2-sphere. Ann. Inst. Henri Poincar Comb. Phys. Interact., 1, 77–138 (2014). arXiv:1307.6490

  3. Geloun, J.B., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69–109 (2013). arXiv:1111.4997

  4. Geloun, J.B., Rivasseau, V.: A renormalizable SYK-type tensor field theory (2017). arXiv:1711.05967

  5. Bonzom, V., Gurău, R., Rivasseau, V.: Random tensor models in the large N limit: Uncoloring the colored tensor models. Phys. Rev. D85, 084037 (2012). arXiv:1202.3637

  6. Bonzom, V., Lionni, L., Tanasă, A.: Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. J. Math. Phys. 58(5), 052301 (2017). arXiv:1702.06944

  7. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581–637 (2014). arXiv:1303.6772

  8. Carrozza S., Tanasă A.: O(N) random tensor models. Lett. Math. Phys. 106(11), 1531–1559 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Casali, M.R., Cristofori, P., Gagliardi, C.: PL 4-manifolds admitting simple crystallizations: framed links and regular genus. J. Knot Theory Ramif. 25(01), 1650005 (2016). arXiv:1410.3321

  10. Delepouve T., Rivasseau V.: Constructive tensor field theory: the \({T^{4}_3}\) model. Commun. Math. Phys. 345(2), 477–506 (2016)

    Article  ADS  MATH  Google Scholar 

  11. Francesco, P.D., Ginsparg, P.H., Zinn-Justin, J.: 2-D gravity and random matrices. Phys. Rep. 254, 1–133 (1995). arXiv:hep-th/9306153

  12. Disertori, M., Gurău, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative \({\Phi_4^4}\) theory to all orders. Phys. Lett. B649, 95–102 (2007). arXiv:hep-th/0612251

  13. Disertori, M., Rivasseau, V.: Two and three loops beta function of non commutative \({\Phi_4^4}\) theory. Eur. Phys. J. C50, 661–671 (2007). arXiv:hep-th/0610224

  14. Ferri M., Gagliardi C., Grasselli L.: A graph-theoretical representation of pl-manifolds—a survey on crystallizations. Aequ. Math. 31(1), 121–141 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freedman M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freidel, L.: Group field theory: an Overview. Int. J. Theor. Phys. 44, 1769–1783 (2005). arXiv:hep-th/0505016

  17. Gagliardi C.: How to deduce the fundamental group of a closed n-manifold from a contracted triangulation. J. Comb. Inf. Syst. Sci. 4(3), 237–252 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Gross, D.J., Rosenhaus, V.: (2017) All point correlation functions in SYK

  19. Grosse, H., Wulkenhaar, R.: The beta function in duality covariant noncommutative \({\phi^4}\) theory. Eur. Phys. J. C35, 277–282 (2004). arXiv:hep-th/0402093

  20. Grosse, H., Wulkenhaar, R.: Renormalization of \({\phi^4}\) theory on noncommutative R 4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). arXiv:hep-th/0401128

  21. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \({\phi^4}\) -theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329, 1069–1130 (2014). arXiv:1205.0465

  22. Gurău, R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B852, 592–614 (2011). arXiv:1105.6072 [hep-th]

  23. Gurău, R.: The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders. Nucl. Phys. B865, 133–147 (2012). arXiv:1203.4965 [hep-th]

  24. Gurău R., Rivasseau V.: The multiscale loop vertex expansion. Ann. Henri Poincare 16(8), 1869–1897 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gurău, R.: Colored group field theory. Commun. Math. Phys. 304, 69–93 (2011). arXiv:0907.2582

  26. Gurău, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399–423 (2012). arXiv:1102.5759

  27. Gurău, R., Ryan, J.P.: Colored tensor models: a review. SIGMA 8, 020 (2012). arXiv:1109.4812

  28. Kirby, R.C., Siebenmann, L.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Number 88. Princeton University Press, Princeton (1977)

  29. Kitaev, A.: A simple model of quantum holography (lecture). http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015). Accessed 10 May 2017

  30. Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B533, 168–177 (2002). arXiv:hep-th/0202039

  31. Moise E.E.: Affine structures in 3-manifolds: V. The triangulation theorem and Hauptvermutung. Ann. Math. 56(1), 96–114 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  32. The on-line encyclopedia of integer sequences. http://www.oeis.org/A057005. Accessed 29 June 2016

  33. Oriti, D.: Group field theory and loop quantum gravity. Gen. Relativ. 4, 125–151 (2017)

  34. Ousmane Samary, D., Pérez-Sánchez, C.I., Vignes-Tourneret, F., Wulkenhaar, R.: Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation. Class. Quantum Gravity 32(17), 175012 (2015). arXiv:1411.7213

  35. Pérez-Sánchez, C.I.: Surgery in colored tensor models. J. Geom. Phys. 120, 262–289 (2017). arXiv:1608.00246

  36. Pérez-Sánchez, C.I., Wulkenhaar, R.: Correlation functions of coloured tensor models and their Schwinger-Dyson equations (2017). arXiv:1706.07358

  37. Pezzana M.: Sulla struttura topologica delle varietà compatte. Ati Sem. Mat. Fis. Univ. Modena 23(1), 269–277 (1975)

    MathSciNet  MATH  Google Scholar 

  38. Reisenberger, M.P., Rovelli, C.: Space-time as a Feynman diagram: The Connection formulation. Class. Quantum Gravity 18, 121–140 (2001). arXiv:gr-qc/0002095

  39. Rivasseau, V.: The tensor track: an update. In: 29th International Colloquium on Group-Theoretical Methods in Physics (GROUP 29) Tianjin, China, August 20–26, 2012 (2012). arXiv:1209.5284 [hep-th]

  40. Rivasseau V.: The tensor track, III. Fortsch. Phys. 62, 81–107 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rivasseau, V.: The tensor track, IV. In: Proceedings, 15th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2015): Corfu, Greece, September 1–25, 2015 (2016)

  42. Sachdev S., Ye J.: Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993)

    Article  ADS  Google Scholar 

  43. Samary, D.O.: Closed equations of the two-point functions for tensorial group field theory. Class. Quantum Gravity 31, 185005 (2014). arXiv:1401.2096

  44. Smerlak, M.: Comment on ‘Lost in Translation: Topological Singularities in Group Field Theory’. Class. Quantum Gravity 28, 178001 (2011). arXiv:1102.1844

  45. Tanasă, A.: Multi-orientable group field theory. J. Phys. A45, 165401 (2012). arXiv:1109.0694

  46. Tanasă, A.: The multi-orientable random tensor model, a review. SIGMA 12, 056 (2016). arXiv:1512.02087

  47. Witten, E.: An SYK-Like model without disorder (2016). arXiv:1610.09758

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos I. Pérez-Sánchez.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sánchez, C.I. The Full Ward-Takahashi Identity for Colored Tensor Models. Commun. Math. Phys. 358, 589–632 (2018). https://doi.org/10.1007/s00220-018-3103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3103-2

Navigation