Skip to main content
Log in

A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form \({T_{\sigma^{n-1} \omega} \circ\cdots\circ T_{\sigma\omega}\circ T_\omega}\). An important aspect of our results is that we only assume ergodicity and invertibility of the random driving \({\sigma:\Omega\to\Omega}\) ; in particular no expansivity or mixing properties are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelkader M., Aimino R.: On the quenched central limit theorem for random dynamical systems. J. Phys. A 49(24), 244002 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aimino R., Nicol M., Vaienti S.: Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Relat. Fields 162(1–2), 233–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhmerov, R.R., Kamenskiĭ, M.I., Potapov, A.S., Rodkina, A.E., Sadovskiĭ, B.N.: Measures of Noncompactness and Condensing Operators, Volume 55 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1992. Translated from the 1986 Russian original by A. Iacob

  4. Arnold L.: Random Dynamical Systems. Springer Monographs in Mathematics, Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Avez, A.: Differential Calculus. A Wiley-Interscience Publication. Wiley, Chichester, 1986. Translated from the French by D. Edmunds

  6. Ayyer A., Liverani C., Stenlund M.: Quenched CLT for random toral automorphism. Discrete Contin. Dyn. Syst. 24(2), 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahsoun W., Bose C.: Mixing rates and limit theorems for random intermittent maps. Nonlinearity 29(4), 1417–1433 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bakhtin V.I.: Random processes generated by a hyperbolic sequence of mappings. I. Izv. Ross. Akad. Nauk Ser. Mat. 58(2), 40–72 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Bakhtin V.I.: Random processes generated by a hyperbolic sequence of mappings. II. Izv. Ross. Akad. Nauk Ser. Mat. 58(3), 184–195 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Blumenthal A.: A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete Contin. Dyn. Syst. 36(5), 2377–2403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Broise, A.: Transformations dilatantes de l’intervalle et théorèmes limites. Astérisque (238):1–109, 1996. Études spectrales d’opérateurs de transfert et applications

  12. Buzzi J.: Exponential Decay of Correlations for random Lasota–Yorke maps. Commun. Math. Phys. 208, 25–54 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. de Simoi, J., Liverani, C.: Fast-slow partially hyperbolic systems: beyond averaging. Part I (Limit Theorems). ArXiv e-prints (Aug. 2014)

  14. Dragičević, D., Froyland, G.: Hölder continuity of Oseledets splittings for semi-invertible operator cocycles. Ergod. Theory Dyn. Syst. To appear. Published online: 09 September 2016. https://dx.doi.org/10.1017/etds.2016.55

  15. Dragičević, D., Froyland, G., González-Tokman, C., Vaienti, S.: Almost sure invariance principle for random Lasota–Yorke maps. Preprint. arXiv:1611.04003

  16. Eagleson G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21(3), 653–660 (1976)

    MathSciNet  MATH  Google Scholar 

  17. Froyland G., Lloyd S., Quas A.: Coherent structures and isolated spectrum for Perron-Frobenius cocycles. Ergod. Theory Dyn. Syst. 30, 729–756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Froyland G., Lloyd S., Quas A.: A semi-invertible Oseledets theorem with applications to transfer operator cocycles. Discrete Contin. Dyn. Syst. 33(9), 3835–3860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Froyland G., Stancevic O.: Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems. Stoch. Dyn. 13(4), 1350004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. González-Tokman C., Quas A.: A semi-invertible operator Oseledets theorem. Ergod. Theory Dyn. Syst. 34, 1230–1272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. González-Tokman C., Quas A.: A concise proof of the multiplicative ergodic theorem on Banach spaces. J. Mod. Dyn. 9(01), 237–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gottwald G.A., Melbourne I.: Homogenization for deterministic maps and multiplicative noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2156), 20130201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Gouëzel, S.: Berry–Esseen theorem and local limit theorem for non uniformly expanding maps. In: Annales de l’Institut Henri Poincaré (B) Probability and Statistics, vol. 41, pp. 997–1024 (2005)

  24. Gouëzel S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38(4), 1639–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. In: Hyperbolic Dynamics, Fluctuations and Large Deviations, Volume 89 of Proceedings Symposium in Pure Mathematics, pp. 161–193. Amer. Math. Soc., Providence (2015)

  26. Guivarc’h Y., Hardy J.: Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d’anosov. Annales de l’IHP Probabilités et statistiques 24(1), 73–98 (1988)

    MATH  Google Scholar 

  27. Hennion H.: Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Am. Math. Soc. 118(2), 627–634 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Volume 1766 of Lecture Notes in Mathematics. Springer, Berlin (2001)

  29. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, 1995. Reprint of the 1980 edition

  30. Kelly D., Melbourne I.: Smooth approximation of stochastic differential equations. Ann. Probab. 44(1), 479–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kelly D., Melbourne I.: Deterministic homogenization for fast–slow systems with chaotic noise. J. Funct. Anal. 272(10), 4063–4102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kifer Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kifer, Y.: Equilibrium states for random expanding transformations. Random Comput. Dynam. 1(1), 1–31 (1992/1993)

  34. Kifer Y.: Limit theorems for random transformations and processes in random environments. Trans. Am. Math. Soc. 350(4), 1481–1518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leppänen J., Stenlund M.: Quasistatic dynamics with intermittency. Math. Phys. Anal. Geom. 19(2), 8 (2016)

    Article  MathSciNet  Google Scholar 

  36. Melbourne, I., Nicol, M.: A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Probab. 37, 478–505 (2009)

  37. Morita T.: A generalized local limit theorem for Lasota–Yorke transformations. Osaka J. Math. 26(3), 579–595 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Morita, T.: Correction to: “A generalized local limit theorem for Lasota–Yorke transformations” [Osaka J. Math. 26(3), 579–595 (1989); MR1021432 (91a:58176)]. Osaka J. Math. 30(3), 611–612 (1993)

  39. Nagaev S.V.: Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2(4), 378–406 (1957)

    Article  MathSciNet  Google Scholar 

  40. Nagaev S.V.: More exact statement of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6(1), 62–81 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nándori P., Szász D., Varjú T.: A central limit theorem for time-dependent dynamical systems. J. Stat. Phys. 146(6), 1213–1220 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Nicol, M., Török, A., Vaienti, S.: Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Theory Dyn. Syst. (2016). https://doi.org/10.1017/etds.2016.69

  43. Ohno T.: Asymptotic behaviors of dynamical systems with random parameters. Publ. Res. Inst. Math. Sci. 19(1), 83–98 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rey-Bellet L., Young L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 28(02), 587–612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rousseau-Egele J.: Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Probab. 11, 772–788 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Saussol B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dragičević.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragičević, D., Froyland, G., González-Tokman, C. et al. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems. Commun. Math. Phys. 360, 1121–1187 (2018). https://doi.org/10.1007/s00220-017-3083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3083-7

Navigation