Skip to main content
Log in

Equivariant Verlinde Algebra from Superconformal Index and Argyres–Seiberg Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the “Coulomb branch index” of the class \({{\mathcal S}}\) theory \({T[\Sigma,G]}\) on \({L(k,1) \times S^1}\), the other is the \({^L G}\) “equivariant Verlinde formula”, or equivalently partition function of \({^L G_{\mathbb{C}}}\) complex Chern–Simons theory on \({\Sigma\times S^1}\). We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual \({^L G}\). When G is not simply-connected, we provide a recipe of computing the index of \({T[\Sigma,G]}\) as summation over the indices of \({T[\Sigma,\tilde{G}]}\) with non-trivial background ’t Hooft fluxes, where \({\tilde{G}}\) is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for \({G=SU(2)}\) or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU(N) or PSU(N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres–Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gukov, S., Pei, D.: Equivariant Verlinde formula from fivebranes and vortices. arXiv:1501.01310

  2. Dimofte T., Gukov S., Hollands L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011) arXiv:1006.0977

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Terashima Y., Yamazaki M.: SL(2,R) Chern–Simons, Liouville, and gauge theory on duality walls. JHEP 1108, 135 (2011) arXiv:1103.5748

    Article  ADS  MATH  Google Scholar 

  4. Dimofte T., Gaiotto D., Gukov S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367–419 (2014) arXiv:1108.4389

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dimofte T., Gaiotto D., Gukov S.: 3-Manifolds and 3d indices. Adv. Theor. Math. Phys. 17, 975–1076 (2013) arXiv:1112.5179

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecotti, S., Cordova, C., Vafa, C.: Braids, walls, and mirrors. arXiv:1110.2115

  7. Cordova C., Jafferis D. L.: Complex Chern–Simons from M5-branes on the squashed three-sphere. JHEP 1711, 119 (2017) arXiv:1305.2891

    Article  ADS  Google Scholar 

  8. Pei D., Ye K.: A 3d–3d appetizer. JHEP 1611, 008 (2016) arXiv:1503.04809

    Article  ADS  MathSciNet  Google Scholar 

  9. Romelsberger C.: Counting chiral primaries in \({{\mathcal{N}} = 1}\), d = 4 superconformal field theories. Nucl. Phys. B 747, 329–353 (2006) arXiv:hep-th/0510060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kinney J., Maldacena J. M., Minwalla S., Raju S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007) arXiv:hep-th/0510251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gadde A., Rastelli L., Razamat S. S., Yan W.: Gauge theories and Macdonald polynomials. Commun. Math. Phys. 319, 147–193 (2013) arXiv:1110.3740

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Alday L. F., Bullimore M., Fluder M.: On S-duality of the superconformal index on lens spaces and 2d TQFT. JHEP 1305, 122 (2013) arXiv:1301.7486

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Razamat S. S., Yamazaki M.: S-duality and the N = 2 ens space index. JHEP 1310, 048 (2013) arXiv:1306.1543

    Article  ADS  MATH  Google Scholar 

  14. Hitchin N. J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–131 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Donagi R., Pantev T.: Langlands duality for Hitchin systems. Invent. Math. 189(3), 653–735 (2012) arXiv:math/0604617

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Andersen, J. E., Gukov, S., Pei, D.: The Verlinde formula for Higgs bundles. arXiv:1608.0176

  18. Closset C., Dumitrescu T. T., Festuccia G., Komargodski Z.: From rigid supersymmetry to twisted holomorphic theories. Phys. Rev. D 90(8), 085006 (2014) arXiv:1407.2598

    Article  ADS  Google Scholar 

  19. Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric langlands program. arXiv:hep-th/0612073

  20. Gang D., Kim N., Romo M., Yamazaki M.: Aspects of defects in 3d–3d correspondence. JHEP 1610, 062 (2016) arXiv:1510.05011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T duality. Nucl. Phys. B 479, 243–259 (1996) arXiv:hep-th/9606040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Halpern-Leistner, D.: The equivariant Verlinde formula on the moduli of Higgs bundles. Reprint arXiv:1608.01754

  23. Gukov S., Witten E.: Branes and quantization. Adv. Theor. Math. Phys. 13, 1 (2009) arXiv:0809.0305

    Article  MathSciNet  MATH  Google Scholar 

  24. Gukov S.: Quantization via mirror symmetry. Jpn. J. Math. 6(2), 65–119 (2011) arXiv:1011.2218

    Article  MathSciNet  MATH  Google Scholar 

  25. Nekrasov N., Witten E.: The omega deformation, branes, integrability, and Liouville Theory. JHEP 1009, 092 (2010) arXiv:1002.0888

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dimofte T., Gukov S.: Chern–Simons theory and S-duality. JHEP 05, 109 (2013) arXiv:1106.4550

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fredrickson, L., Pei, D., Yan, W., Ye, K.: Argyres–Douglas theories, chiral algebras and wild hitchin characters. arXiv:1701.0878

  28. Witten, E.: Geometric langlands from six dimensions. arXiv:0905.2720

  29. Minahan J. A., Nemeschansky D.: An \({{\mathcal{N}}=2}\) superconformal fixed point with E 6 global symmetry. Nucl. Phys. B 482, 142–152 (1996) arXiv:hep-th/9608047

    Article  ADS  MATH  Google Scholar 

  30. Gaiotto D., Neitzke A., Tachikawa Y.: Argyres–Seiberg duality and the Higgs branch. Commun. Math. Phys. 294, 389–410 (2010) arXiv:0810.4541

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gadde A., Rastelli L., Razamat S. S., Yan W.: The superconformal index of the E 6 SCFT. JHEP 08, 107 (2010) arXiv:1003.4244

    Article  ADS  MATH  Google Scholar 

  32. Argyres P. C., Seiberg N.: S-duality in \({{\mathcal{N}}=2}\) supersymmetric gauge theories. JHEP 12, 088 (2007) arXiv:0711.0054

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129(2), 393–429 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Benini F., Nishioka T., Yamazaki M.: 4d Index to 3d Index and 2d TQFT. Phys. Rev. D 86, 065015 (2012) arXiv:1109.0283

    Article  ADS  Google Scholar 

  35. Razamat S. S., Willett B.: Global properties of supersymmetric theories and the lens space. Commun. Math. Phys 334(2), 661–696 (2015) arXiv:1307.4381

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Tachikawa Y.: A review of the T N theory and its cousins. PTEP 2015(11), 11B102 (2015) arXiv:1504.0148

    Google Scholar 

  37. Gaiotto D.: \({{\mathcal{N}}=2}\) dualities. JHEP 08, 034 (2012) arXiv:0904.2715

    Article  ADS  Google Scholar 

  38. Gadde A., Razamat S. S., Willett B.: ”Lagrangian” for a non-Lagrangian field theory with \({\mathcal{N}=2}\) supersymmetry. Phys. Rev. Lett. 115(17), 171604 (2015) arXiv:1505.0583

    Article  ADS  MathSciNet  Google Scholar 

  39. Gepner D., Witten E.: String theory on group manifolds. Nucl. Phys. B 278, 493 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. Kirillov A. N., Mathieu P., Senechal D., Walton M. A.: Can fusion coefficients be calculated from the depth rule?. Nucl. Phys. B 391, 651–674 (1993) arXiv:hep-th/9203004

    Article  ADS  MathSciNet  Google Scholar 

  41. Begin L., Mathieu P., Walton M. A.: \({\widehat{su}(3)_k}\) fusion coefficients. Mod. Phys. Lett. A 7, 3255–3266 (1992) arXiv:hep-th/9206032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Guha, P.: Witten’s volume formula, cohomological pairings of moduli space of flat connections and applications of multiple zeta functions. In: Quantum Field Theory, pp. 95–116. Springer, New York (2009)

  43. Gothen P. B.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 05(06), 861–875 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. García-Prada, O., Gothen, P. B., Muñoz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Mem. Am. Math. Soc. 187(879), (2007). arXiv:math/0411242

  45. Boalch, P.: Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves. arXiv:1203.6607

  46. Hayashi M.: The moduli space of SU(3)-flat connections and the fusion rules. Proc. Am. Math. Soc. 127(5), 1545–1555 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Biswas I., Gothen P. B., Logares M.: On moduli spaces of Hitchin pairs. Math. Proc. Camb. Philos. Soc. 151, 441–457 (2011) arXiv:0912.4615

    Article  MathSciNet  MATH  Google Scholar 

  48. Chacaltana O., Distler J.: Tinkertoys for Gaiotto duality. JHEP 11, 099 (2010) arXiv:1008.5203

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ye.

Additional information

Communicated by X. Yin

Wenbin Yan—Primary affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing, China.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gukov, S., Pei, D., Yan, W. et al. Equivariant Verlinde Algebra from Superconformal Index and Argyres–Seiberg Duality. Commun. Math. Phys. 357, 1215–1251 (2018). https://doi.org/10.1007/s00220-017-3074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3074-8

Navigation