Equivariant Verlinde Algebra from Superconformal Index and Argyres–Seiberg Duality

Article
  • 30 Downloads

Abstract

In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the “Coulomb branch index” of the class \({{\mathcal S}}\) theory \({T[\Sigma,G]}\) on \({L(k,1) \times S^1}\), the other is the \({^L G}\) “equivariant Verlinde formula”, or equivalently partition function of \({^L G_{\mathbb{C}}}\) complex Chern–Simons theory on \({\Sigma\times S^1}\). We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual \({^L G}\). When G is not simply-connected, we provide a recipe of computing the index of \({T[\Sigma,G]}\) as summation over the indices of \({T[\Sigma,\tilde{G}]}\) with non-trivial background ’t Hooft fluxes, where \({\tilde{G}}\) is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for \({G=SU(2)}\) or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU(N) or PSU(N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres–Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

220_2017_3074_MOESM1_ESM.pdf (275 kb)
ESM 1 (PDF 275 KB)

References

  1. 1.
    Gukov, S., Pei, D.: Equivariant Verlinde formula from fivebranes and vortices. arXiv:1501.01310
  2. 2.
    Dimofte T., Gukov S., Hollands L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011) arXiv:1006.0977ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Terashima Y., Yamazaki M.: SL(2,R) Chern–Simons, Liouville, and gauge theory on duality walls. JHEP 1108, 135 (2011) arXiv:1103.5748ADSCrossRefMATHGoogle Scholar
  4. 4.
    Dimofte T., Gaiotto D., Gukov S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367–419 (2014) arXiv:1108.4389ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dimofte T., Gaiotto D., Gukov S.: 3-Manifolds and 3d indices. Adv. Theor. Math. Phys. 17, 975–1076 (2013) arXiv:1112.5179MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cecotti, S., Cordova, C., Vafa, C.: Braids, walls, and mirrors. arXiv:1110.2115
  7. 7.
    Cordova C., Jafferis D. L.: Complex Chern–Simons from M5-branes on the squashed three-sphere. JHEP 1711, 119 (2017) arXiv:1305.2891ADSCrossRefGoogle Scholar
  8. 8.
    Pei D., Ye K.: A 3d–3d appetizer. JHEP 1611, 008 (2016) arXiv:1503.04809ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Romelsberger C.: Counting chiral primaries in \({{\mathcal{N}} = 1}\), d = 4 superconformal field theories. Nucl. Phys. B 747, 329–353 (2006) arXiv:hep-th/0510060ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kinney J., Maldacena J. M., Minwalla S., Raju S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007) arXiv:hep-th/0510251ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gadde A., Rastelli L., Razamat S. S., Yan W.: Gauge theories and Macdonald polynomials. Commun. Math. Phys. 319, 147–193 (2013) arXiv:1110.3740ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Alday L. F., Bullimore M., Fluder M.: On S-duality of the superconformal index on lens spaces and 2d TQFT. JHEP 1305, 122 (2013) arXiv:1301.7486ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Razamat S. S., Yamazaki M.: S-duality and the N = 2 ens space index. JHEP 1310, 048 (2013) arXiv:1306.1543ADSCrossRefMATHGoogle Scholar
  14. 14.
    Hitchin N. J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–131 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Donagi R., Pantev T.: Langlands duality for Hitchin systems. Invent. Math. 189(3), 653–735 (2012) arXiv:math/0604617ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Andersen, J. E., Gukov, S., Pei, D.: The Verlinde formula for Higgs bundles. arXiv:1608.0176
  18. 18.
    Closset C., Dumitrescu T. T., Festuccia G., Komargodski Z.: From rigid supersymmetry to twisted holomorphic theories. Phys. Rev. D 90(8), 085006 (2014) arXiv:1407.2598ADSCrossRefGoogle Scholar
  19. 19.
    Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric langlands program. arXiv:hep-th/0612073
  20. 20.
    Gang D., Kim N., Romo M., Yamazaki M.: Aspects of defects in 3d–3d correspondence. JHEP 1610, 062 (2016) arXiv:1510.05011ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T duality. Nucl. Phys. B 479, 243–259 (1996) arXiv:hep-th/9606040ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Halpern-Leistner, D.: The equivariant Verlinde formula on the moduli of Higgs bundles. Reprint arXiv:1608.01754
  23. 23.
    Gukov S., Witten E.: Branes and quantization. Adv. Theor. Math. Phys. 13, 1 (2009) arXiv:0809.0305MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Gukov S.: Quantization via mirror symmetry. Jpn. J. Math. 6(2), 65–119 (2011) arXiv:1011.2218MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nekrasov N., Witten E.: The omega deformation, branes, integrability, and Liouville Theory. JHEP 1009, 092 (2010) arXiv:1002.0888ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Dimofte T., Gukov S.: Chern–Simons theory and S-duality. JHEP 05, 109 (2013) arXiv:1106.4550ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fredrickson, L., Pei, D., Yan, W., Ye, K.: Argyres–Douglas theories, chiral algebras and wild hitchin characters. arXiv:1701.0878
  28. 28.
    Witten, E.: Geometric langlands from six dimensions. arXiv:0905.2720
  29. 29.
    Minahan J. A., Nemeschansky D.: An \({{\mathcal{N}}=2}\) superconformal fixed point with E6 global symmetry. Nucl. Phys. B 482, 142–152 (1996) arXiv:hep-th/9608047ADSCrossRefMATHGoogle Scholar
  30. 30.
    Gaiotto D., Neitzke A., Tachikawa Y.: Argyres–Seiberg duality and the Higgs branch. Commun. Math. Phys. 294, 389–410 (2010) arXiv:0810.4541ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Gadde A., Rastelli L., Razamat S. S., Yan W.: The superconformal index of the E6 SCFT. JHEP 08, 107 (2010) arXiv:1003.4244ADSCrossRefMATHGoogle Scholar
  32. 32.
    Argyres P. C., Seiberg N.: S-duality in \({{\mathcal{N}}=2}\) supersymmetric gauge theories. JHEP 12, 088 (2007) arXiv:0711.0054ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129(2), 393–429 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Benini F., Nishioka T., Yamazaki M.: 4d Index to 3d Index and 2d TQFT. Phys. Rev. D 86, 065015 (2012) arXiv:1109.0283ADSCrossRefGoogle Scholar
  35. 35.
    Razamat S. S., Willett B.: Global properties of supersymmetric theories and the lens space. Commun. Math. Phys 334(2), 661–696 (2015) arXiv:1307.4381ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tachikawa Y.: A review of the TN theory and its cousins. PTEP 2015(11), 11B102 (2015) arXiv:1504.0148Google Scholar
  37. 37.
    Gaiotto D.: \({{\mathcal{N}}=2}\) dualities. JHEP 08, 034 (2012) arXiv:0904.2715ADSCrossRefGoogle Scholar
  38. 38.
    Gadde A., Razamat S. S., Willett B.: ”Lagrangian” for a non-Lagrangian field theory with \({\mathcal{N}=2}\) supersymmetry. Phys. Rev. Lett. 115(17), 171604 (2015) arXiv:1505.0583ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Gepner D., Witten E.: String theory on group manifolds. Nucl. Phys. B 278, 493 (1986)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Kirillov A. N., Mathieu P., Senechal D., Walton M. A.: Can fusion coefficients be calculated from the depth rule?. Nucl. Phys. B 391, 651–674 (1993) arXiv:hep-th/9203004ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Begin L., Mathieu P., Walton M. A.: \({\widehat{su}(3)_k}\) fusion coefficients. Mod. Phys. Lett. A 7, 3255–3266 (1992) arXiv:hep-th/9206032ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Guha, P.: Witten’s volume formula, cohomological pairings of moduli space of flat connections and applications of multiple zeta functions. In: Quantum Field Theory, pp. 95–116. Springer, New York (2009)Google Scholar
  43. 43.
    Gothen P. B.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 05(06), 861–875 (1994)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    García-Prada, O., Gothen, P. B., Muñoz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Mem. Am. Math. Soc. 187(879), (2007). arXiv:math/0411242
  45. 45.
    Boalch, P.: Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves. arXiv:1203.6607
  46. 46.
    Hayashi M.: The moduli space of SU(3)-flat connections and the fusion rules. Proc. Am. Math. Soc. 127(5), 1545–1555 (1999)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Biswas I., Gothen P. B., Logares M.: On moduli spaces of Hitchin pairs. Math. Proc. Camb. Philos. Soc. 151, 441–457 (2011) arXiv:0912.4615MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Chacaltana O., Distler J.: Tinkertoys for Gaiotto duality. JHEP 11, 099 (2010) arXiv:1008.5203ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.Center for Quantum Geometry of Moduli Spaces, Department of MathematicsAarhus UniversityAarhusDenmark
  4. 4.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina
  5. 5.Center for Mathematical Sciences and ApplicationsHarvard UniversityCambridgeUSA
  6. 6.Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations