Skip to main content
Log in

A Conformally Invariant Gap Theorem in Yang–Mills Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show a sharp conformally invariant gap theorem for Yang–Mills connections in dimension 4 by exploiting an associated Yamabe-type problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah M., Drinfeld V., Hitchin N., Manin Y.: Construction of instantons. Phys. Lett. 65, 185–187 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin T.: Equations différentielles non linéaires et Probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Belavin A., Polyakov A., Schwarz A., Tyupkin Y.: Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. 59B, 8–87 (1975)

    MathSciNet  Google Scholar 

  4. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10, pp. xii+510. Springer, Berlin (1987)

  5. Bor G.: Yang–Mills fields which are not self-dual. Commun. Math. Phys. 145, 393–410 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bourguignon, J.P.: Formules de Weitzenböck en dimension 4, In: Géometrie Riemannienne de dimension 4. CEDIC, Paris (1981)

  7. Bourguignon J.P., Lawson H.: Stability and isolation phenomena for Yang–Mills fields. Commun. Math. Phys. 79, 189–230 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, Y-M., Shen, C-L.: Evolution of Yang–Mills connections, Differential geometry (Shanghair, 1991), pp. 33–41. World Sci. Publ., River Edge (1993)

  9. Dodziuk J., Min-Oo M.: An L 2-isolation theorem for Yang–Mills fields over complete manifolds. Compos. Math. 47, 165–169 (1982)

    MATH  Google Scholar 

  10. Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Diff. Geom. 18(2), 279-315

  11. Donaldson S.K.: Polynomial invariants for smooth four-manifolds. Topology 29, 257–315 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds, Oxford Mathematical Monographs, (1990)

  13. Feehan P.: Energy gap for Yang–Mills connections, I: Four-dimensional closed Riemannian manifolds. Adv. Math. 296, 55–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feehan P. Global existence and convergence of solutions to gradient systems and applications to Yang–Mills gradient flow, arXiv:1409.1525

  15. Gerhardt C.: An energy gap theorem for Yang–Mills connections. Commun. Math. Phys. 298, 515–522 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Gursky M.J.: Four-manifolds with \({\delta W^{+} = 0}\) and Einstein constants of the sphere. Math. Ann. 318(3), 417–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gursky M.J., LeBrun C.: Yamabe invariants and spin-c structures. Geom. Funct. Anal. 8(6), 965–977 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gursky M.J., LeBrun C.: On Einstein manifolds of positive sectional curvature. Ann. Global Anal. Geom. 17(4), 315–328 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kozono H., Maeda Y., Naito H.: Global solution for the Yang–Mills gradient flow on 4-manifolds. Nagoya Math. J. 139, 93–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. LeBrun C.: Ricci curvature, minimal volumes, and Seiberg–Witten theory. Invent. Math. 145(2), 279–316 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lee J., Parker T.: The Yamabe problem. Bull. Amer. Math. Soc. 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Min-Oo An L 2-isolation theorem for Yang–Mills fields. Comp. Math. 47, Fasc. 2, 153-163 (1982).

  23. Parker T.: Non-minimal Yang–Mills fields and dynamics Invent. Math. 107(2), 397–420 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Parker T.: Gauge theories on four-dimensional Riemannian manifolds. Commun. Math. Phys. 85, 563–602 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Råde, J.: Decay estimates for Yang–Mills fields: two new proofs Global analysis in modern mathematics (Orono, ME, 1991) 91–105, Publish or Perish, Houston, TX (1993)

  26. Råde J.: On the Yang–Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431, 123–163 (1992)

    MathSciNet  Google Scholar 

  27. Sadun L., Segert J.: Non-self-dual Yang–Mills connections with quadropole symmetry. Commun. Math. Phys. 145, 363–391 (1992)

    Article  ADS  MATH  Google Scholar 

  28. Seaman, W.: Harmonic two-forms in four dimensions. Proc. Am. Math. Soc., 112(2) (1991)

  29. Schlatter A.: Long-time behaviour of the Yang–Mills flow in four dimensions. Ann. Glob. Anal. Geom. 15, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen C.L.: The gap phenomena of Yang–Mills fields over the complete manifold. Math. Z. 180, 69–77 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sibner L.M., R.J. Sibner, K. Uhlenbeck, Solutions to Yang–Mills equations that are not self-dual, Proc. Natl. Acad. Sci. USA. 86, 8610–8613 (1989)

  32. Simon L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 2(118), 525–571 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stein E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces, Princeton Math., Series 32. Princeton University Press, Princeton, NJ (1971)

  34. Struwe M. (1994) The Yang–Mills flow in four dimensions. Calc. Var. 2, 123–150

  35. Xin Y.L.: Remarks on gap phenomena in four dimensions, Calc. Var. PDE. 2, 123–150 (1994)

  36. Yang, B.: The uniqueness of tangent cones for Yang–Mills connections with isolated singularities. Adv. Math. 180(2), 648–691

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Lynn Kelleher.

Additional information

Communicated by P. T. Chrusciel.

The first author acknowledges the support of NSF Grant DMS-1509633. The second author was supported by a University of California President’s Dissertation Year Fellowship during this work. The third author acknowledges the support of NSF Grant DMS-1454854.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gursky, M., Kelleher, C.L. & Streets, J. A Conformally Invariant Gap Theorem in Yang–Mills Theory. Commun. Math. Phys. 361, 1155–1167 (2018). https://doi.org/10.1007/s00220-017-3070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3070-z

Navigation