Communications in Mathematical Physics

, Volume 359, Issue 3, pp 951–973 | Cite as

Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes Equations in Unbounded Domains

  • Kohei Nakao
  • Yasushi Taniuchi


We shall find the weakest norm that satisfies the Brezis–Gallouet–Wainger type inequality, under some conditions. As an application of the Brezis–Gallouet–Wainger type inequality, we shall establish Beale–Kato–Majda type blow-up criteria of smooth solutions to the 3-D Navier–Stokes equations in unbounded domains.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borchers W., Miyakawa T.: L 2 decay for the Navier–Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borchers W., Sohr H.: On the semigroup of the Stokes operator for exterior domains in L q-spaces. Math. Z. 196, 415–425 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bradshaw, Z., Farhat, A., Grujic, Z.: An algebraic reduction of the ’scaling gap’ in the Navier–Stokes regularity problem. arXiv:1704.05546 (preprint)
  5. 5.
    Brezis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4, 677–681 (1980)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brezis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differ. Equ. 5, 773–789 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chae D.: On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chemin J.-Y.: Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and Its Applications. Oxford Science Publications, Oxford (1998)Google Scholar
  10. 10.
    Engler H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fan J., Jiang S., Nakamura G., Zhou Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13, 557–571 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Farwig R., Sohr H.: On the Stokes and Navier–Stokes system for domains with noncompact boundary in L q-spaces. Math. Nachr. 170, 53–77 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Farwig R., Sohr H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in L q-spaces. Analysis 16, 1–26 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ferrari A.B.: On the blow-up of solutions of the 3-D Euler equations in a bounded domain. Commun. Math. Phys. 155, 277–294 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fujiwara D., Morimoto H.: An L r-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Giga Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grujic Z., Guberovic R.: A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations. Ann. I. H. Poincare 27, 773–778 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gustafson S., Kang K., Tsai T.-P.: Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations. Commun. Math. Phys. 273, 161–176 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ibrahim S., Majdoub M., Masmoudi N.: Double logarithmic inequality with a sharp constant. Proc. AMS. 135, 87–97 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Iwashita H.: L qL r estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in L q spaces. Math. Ann. 285, 265–288 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kato T.: Strong L p-solutions of the Navier–Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kozono H., Taniuchi Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kozono H., Wadade H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. In: D’Ancona, P., Georgev, V. (eds.) Dispersive Nonlinear Problems in Mathematical Physics. Quad. Mat., vol. 15, pp. 149–220. Dept. Math., Seconda Univ. Napoli, Caserta (2004)Google Scholar
  28. 28.
    Kukavica I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. 48, 1057–1081 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Matsumoto T., Ogawa T.: Interpolation inequality of logarithmic type in abstract Besov spaces and an application to semilinear evolution equations. Math. Nachr. 283, 1810–1828 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Miyakawa T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Morii K., Sato T., Wadade H.: Brézis–Gallouët–Wainger type inequality with a double logarithmic term in the Hölder space: Its sharp constants and extremal functions. Nonlinear Anal. 73, 1747–1766 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ogawa T.: Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow. SIAM J. Math. Anal. 34, 1318–1330 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ogawa T., Taniuchi Y.: A note on blow-up criterion to the 3-D Euler equations in a bounded domain. J. Math. Fluid Mech. 5, 17–23 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ogawa T., Taniuchi Y.: On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differ. Equ. 190, 39–63 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ozawa T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Planchon F.: An extension of the Beale–Kato–Majda criterion for the Euler equations. Commun. Math. Phys. 232, 319–326 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shirota T., Yanagisawa T.: A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain. Proc. Jpn. Acad. Ser. A 69, 77–82 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equation, Series Advances in Mathematical Sciences and Applications, vol. 11, pp. 1–35. World Scientific, River Edge (1992)Google Scholar
  39. 39.
    Stein E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)Google Scholar
  40. 40.
    Stein E.M., Shakarchi R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis. Princeton University Press, Princeton (2011)zbMATHGoogle Scholar
  41. 41.
    Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Taylor M.E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics. Birkhäuser, Boston (1991)CrossRefGoogle Scholar
  43. 43.
    Vishik M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. 32, 769–812 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Weissler F.B.: The Navier–Stokes initial value problem in L p. Arch. Ration. Mech. Anal. 74, 219–230 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yudovich V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zajaczkowski W.M.: Remarks on the breakdown of smooth solutions for the 3-d Euler equations in a bounded domain. Bull. Pol. Acad. Sci. Math. 37, 169–181 (1989)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityMatsumotoJapan
  2. 2.Department of Mathematical SciencesShinshu UniversityMatsumotoJapan

Personalised recommendations