Advertisement

Communications in Mathematical Physics

, Volume 359, Issue 2, pp 699–731 | Cite as

Resonances for Obstacles in Hyperbolic Space

  • Peter Hintz
  • Maciej Zworski
Article
  • 59 Downloads

Abstract

We consider scattering by star-shaped obstacles in hyperbolic space and show that resonances satisfy a universal bound \({ {\rm Im} \lambda \leq - \frac12 }\), which is optimal in dimension 2. In odd dimensions we also show that \({ {\rm Im} \lambda \leq - \frac{\mu}{\rho} }\) for a universal constant \({\mu}\), where \({ \rho }\) is the radius of a ball containing the obstacle; this gives an improvement for small obstacles. In dimensions 3 and higher the proofs follow the classical vector field approach of Morawetz, while in dimension 2 we obtain our bound by working with spaces coming from general relativity. We also show that in odd dimensions resonances of small obstacles are close, in a suitable sense, to Euclidean resonances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bo10.
    Borthwick D.: Sharp upper bounds on resonances for perturbations of hyperbolic space. Asymptot. Anal. 69(1-2), 45–85 (2010)MathSciNetzbMATHGoogle Scholar
  2. Bu02.
    Burq N.: Semi-classical estimates for the resolvent in nontrapping geometries. Int. Math. Res. Not. 5, 221–241 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. BuLe01.
    Burq N., Lebeau G.: Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. 34, 817–870 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. DaRo08.
    Dafermos M., Rodnianski I.: Lectures on black holes and linear waves. Evol. Equ. Clay Math. Proc. 17, 97–205 (2008)MathSciNetGoogle Scholar
  5. Dy11.
    Dyatlov S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023–1035 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. DyZw.
    Dyatlov, S., Zworski, M.: Mathematical Theory of Scattering Resonances, Book in Preparation. http://math.mit.edu/~dyatlov/res/
  7. FeLa90.
    Fernandez C., Lavine R.: Lower bounds for resonance widths in potential and obstacle scattering. Commun. Math.Phys. 128, 263–284 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Gui05.
    Guillarmou C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ho85.
    Hörmander L.: The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators. Springer, Berlin (1985)zbMATHGoogle Scholar
  10. HiVa15a.
    Hintz P., Vasy A.: Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes. Anal. PDE 8(8), 1807–1890 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. HiVa15b.
    Hintz, P., Vasy, A.: Asymptotics for the Wave Equation on Differential Forms on Kerr–de Sitter Space. Preprint, arXiv:1502.03179 (2015)
  12. HiVa16.
    Hintz, P., Vasy, A.: The Global Non-linear Stability of the Kerr–de Sitter Family of Black Holes. Preprint, arXiv:1606.04014 (2016)
  13. HiZw17.
    Hintz, P., Zworski, M.: Wave decay for star-shaped obstacles in \({\mathbb{R}^3}\): papers of Morawetz and Ralston revisited, expository note. Preprint, arXiv:1703.01389 (2017)
  14. LaPh68.
    Lax P.D., Phillips R.S.: Scattering Theory. Academic Press, Cambridge (1968)zbMATHGoogle Scholar
  15. Ma91.
    Mazzeo R.: Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds. Am. J. Math. 113(1), 25–45 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. MeSj78.
    Melrose R.B., Sjöstrand J.: Singularities of boundary value problems. I. Commun. Pure Appl. Math. 31, 593–617 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. MeSj82.
    Melrose R.B., Sjöstrand J.: Singularities of boundary value problems. II. Commun. Pure Appl. Math. 35, 129–168 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mo66a.
    Morawetz C.: Exponential decay of solutions of the wave equation. Commun. Pure Appl. Math. 19, 439–444 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Mo66b.
    Morawetz, C.: Energy Identities for the Wave Equation, New York Univ., Courant Inst. Math. Sci., Res. Rep. No. IMM346, 1966. https://archive.org/details/energyidentities00mora
  20. Mo72.
    Morawetz C.: On the modes of decay for the wave equation in the exterior of a reflecting body. Proc. R. Irish Acad. Sect. A 72, 113–120 (1972)MathSciNetzbMATHGoogle Scholar
  21. PS92.
    Petkov, V.M., Stoyanov, L.N.: Geometry of reflecting rays and inverse spectral problems. Wiley, Chichester (1992)Google Scholar
  22. Ra78.
    Ralston J.: Addendum to: “The first variation of the scattering matrix” (J. Differential Equations 21(2), 378–394 (1976)) by J.W. Helton and J. Ralston. J. Differ. Equ. 28, 155–162 (1966)ADSCrossRefGoogle Scholar
  23. Ta11a.
    Taylor M.E.: Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences Volume 115. Springer, Berlin (2011)Google Scholar
  24. Ta11b.
    Taylor M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations, Applied Mathematical Sciences Volume 116. Springer, Berlin (2011)Google Scholar
  25. Va73.
    Vainberg B.R.: Exterior elliptic problems that depend polynomially on the spectral parameter and the asymptotic behavior for large values of the time of the solutions of nonstationary problems. (Russian) Mat. Sb. (N.S.) 92(134), 224–241 (1973)MathSciNetGoogle Scholar
  26. Va12.
    Vasy A.: Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, inverse problems and applications. In: Uhlmann, G. (eds) Inside Out II, vol. 60, Cambridge University Press, Cambridge (2012)Google Scholar
  27. Va13.
    Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces, with an appendix by Semyon Dyatlov. Invent. Math. 194, 381–513 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Zw12.
    Zworski M.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012)Google Scholar
  29. Zw16.
    Zworski M.: Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited. J. Spectr. Theory 6, 1087–1114 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Zw17.
    Zworski M.: Mathematical study of scattering resonances. Bull. Math. Sci. 7, 1–85 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations