Skip to main content
Log in

Global in Time Classical Solutions to the 3D Quasi-Geostrophic System for Large Initial Data

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, the authors show the existence of global in time classical solutions to the 3D quasi-geostrophic system with Ekman pumping for any smooth initial value (possibly large). This system couples an inviscid transport equation in \({\mathbb{R}^3_+}\) with an equation on the boundary satisfied by the trace. The proof combines the De Giorgi regularization effect on the boundary \({z=0}\)—similar to the so called surface quasi-geostrophic equation—with Beale–Kato–Majda techniques to propagate regularity for \({z > 0}\). A bootstrapping argument combining potential theory and Littlewood–Paley techniques is used to strengthen the regularization effect on the trace up to the Besov space B̊ 1∞,∞ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri H., Chemin J., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bourgain J., Brezis H., Mironescu P.: Lifting in Sobolev spaces. J. Anal. Math. 80(1), 37–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgeois A.J., Beale J.T.: Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25(4), 1023–1068 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli L., Chan C.H., Vasseur A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y.: Système primitif de l’océan-atmosphère et limite quasi-géostrophique. In: Séminaire sur les Équations aux D érivées Partielles, 1995–1996, Sémin. Équ. Dériv. Partielles, Exp. No. VII, 15. École Polytech., Palaiseau (1996)

  9. Chemin J.-Y.: Fluides Parfaits Incompressibles. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  10. Constantin P.: Euler Equations, Navier–Stokes Equations and Turbulence, pp. 1–43. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

  12. Constantin P., Vicol V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. Inst. Henri Poincare (C) Non Linear Anal. 25(6), 1103–1110 (2008)

    Article  ADS  MATH  Google Scholar 

  14. Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Desjardins B., Grenier E.: Derivation of quasi-geostrophic potential vorticity equations. Adv. Differ. Equ. 3(5), 715–752 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012) ArXiv e-prints, April 2011.

  17. Dong, H., Pavlović, N.: Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces. Commun. Math. Phys. 290, 801–812 (2009).

  18. Friedlander S., Vicol V.: Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. Henri Poincare (C) Non Linear Anal. 28(2), 283–301 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Grafakos L.: Modern Fourier Analysis, 2nd edition. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  20. Held I.M., Pierrehumbert R.T., Garner S.T., Swanson K.L.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Lecture Notes in Mathematics, pp. 25–70. Springer, Nature (1975)

  22. Kiselev A., Nazarov F.: Variation on a theme of Caffarelli and Vasseur. J. Math. Sci. 166(1), 31–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

  24. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Pedlosky J.: Geophysical Fluid Dynamics. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  26. Puel M., Vasseur A.: Global weak solutions to the inviscid 3D quasi-geostrophic equation. Commun. Math. Phys. 339(3), 1063–1082 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Schwab R.W., Silvestre L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9(3), 727–772 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)

    Book  Google Scholar 

  29. Vasseur, A.: The De Giorgi method for elliptic and parabolic equations and some applications. To appear in Lectures on the Analysis of Nonlinear Partial Differential Equations, vol. 4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Novack.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novack, M.D., Vasseur, A.F. Global in Time Classical Solutions to the 3D Quasi-Geostrophic System for Large Initial Data. Commun. Math. Phys. 358, 237–267 (2018). https://doi.org/10.1007/s00220-017-3049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3049-9

Navigation