Skip to main content
Log in

The Hawking–Penrose Singularity Theorem for C 1,1-Lorentzian Metrics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Hawking–Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of C 1,1-regularity. We formulate appropriate weak versions of the strong energy condition and genericity condition for C 1,1-metrics, and of C 0-trapped submanifolds. By regularisation, we show that, under these weak conditions, causal geodesics necessarily become non-maximising. This requires a detailed analysis of the matrix Riccati equation for the approximating metrics, which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersson, L., Galloway, G.J., Howard, R.: A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian and Riemannian geometry. Commun. Pure Appl. Math. 51(6), 1097–0312 (1998)

  2. Beem J.K., Ehrlich P., Easley K.: Global Lorentzian Geometry, 2nd edn. Chapmann & Hall, London (1996)

    MATH  Google Scholar 

  3. Chruściel, P.T.: Elements of causality theory. arXiv:1110.6706

  4. Chruściel P.T., Grant J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Eschenburg J.-H., Heintze E.: Comparison theory for Riccati equations. Manuscripta Math. 68, 209–214 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galloway G., Senovilla J.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Gravity 27(15), 152002 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Graf M.: Volume comparison for C 1,1 metrics. Ann. Glob. Anal. Geom. 50, 209–235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcí a-Parrado A., Senovilla J.M.M.: Causal structures and causal boundaries. Class. Quantum Gravity 22, R1–R84 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Grant J.D.E.: Areas and volumes for null cones. Ann. Henri Poincaré 12, 965–985 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Hawking S.W.: The occurrence of singularities in cosmology. III. Causality and singularities. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 300(1461), 187–201 (1967)

    Article  ADS  MATH  Google Scholar 

  11. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  12. Hawking S.W., Penrose R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kriele M.: Spacetime. Springer, Berlin (2001)

    MATH  Google Scholar 

  14. Kunzinger M., Steinbauer R., Stojković M.: The exponential map of a C 1,1-metric. Differ. Geom. Appl. 34, 14–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunzinger M., Steinbauer R., Stojković M., Vickers J.A.: A regularisation approach to causality theory for C 1,1-Lorentzian metrics. Gen. Relativ. Gravit. 46, 1738 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kunzinger M., Steinbauer R., Stojković M., Vickers J.A.: Hawking’s singularity theorem for C 1,1-metrics. Class. Quantum Gravity 32, 075012 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kunzinger M., Steinbauer R., Vickers J.A.: The Penrose singularity theorem in regularity C 1,1. Class. Quantum Gravity 32, 155010 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lichnerowicz, A.: Théories relativistes de la gravitation et de l’ électromagnétisme. Relativité générale et théories unitaires. Masson, Paris (1955)

  19. Mars M., Senovilla J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quantum Gravity 10(9), 1865–1897 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Minguzzi E.: Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49(9), 092501 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Minguzzi E.: Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math. 177(4), 569–625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes, Recent developments in pseudo Riemannian geometry, ESI Lect. Math. Phys., 299–358, p. 0609119 (2008)

  23. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. Recent developments in pseudo-Riemannian geometry, 299–358, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich (2008)

  24. O’Neill B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983)

    Google Scholar 

  25. Oppenheimer J.R., Snyder H.: On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MATH  Google Scholar 

  26. Penrose, R.: Structure of space-time, Battelle rencontres. In: DeWitt, C.M., Wheeler, J.A. (eds.) 1967 Lectures in Mathematics and Physics, pp. 121–235. W. A. Benjamin, Inc., Amsterdam (1968)

  27. Penrose, R.: The Geometry of Impulsive Gravitational Waves, General Relativity (Papers in Honour of J. L. Synge), pp. 101–115. Clarendon Press, Oxford (1972)

  28. Penrose, R.: Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, Philadelphia, PA., Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, no. 7 (1972)

  29. Peters S.: Convergence of Riemannian manifolds. Compos. Math. 62(1), 3–16 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Penrose R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sämann C.: Global hyperbolicity for spacetimes with continuous metrics. Ann. Henri Poincaré 17(6), 1429–1455 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sbierski, J.: The C 0-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. Preprint arXiv:1507.00601 [math-ph]. (To appear in Journal of Differential Geometry)

  33. Senovilla J.M.M.: Singularity theorems and their Consequences. Gen. Relat. Gravit. 30(5), 701–848 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Senovilla J.M.M., Garfinkle D.: The 1965 Penrose singularity theorem. Class. Quantum Gravity 32(12), 124008 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Treude J.-H., Grant J.D.E.: Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems. Ann. Glob. Anal. Geom. 43, 233–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kunzinger.

Additional information

Communicated by P. T. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, M., Grant, J.D.E., Kunzinger, M. et al. The Hawking–Penrose Singularity Theorem for C 1,1-Lorentzian Metrics. Commun. Math. Phys. 360, 1009–1042 (2018). https://doi.org/10.1007/s00220-017-3047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3047-y

Navigation