Advertisement

Communications in Mathematical Physics

, Volume 359, Issue 3, pp 1079–1089 | Cite as

Repulsion in Low Temperature \({\beta}\)-Ensembles

  • Yacin Ameur
Open Access
Article

Abstract

We prove a result on separation of particles in a two-dimensional Coulomb plasma, which holds provided that the inverse temperature \({\beta}\) satisfies \({\beta > 1}\). For large \({\beta}\), separation is obtained at the same scale as the conjectural Abrikosov lattice optimal separation.

References

  1. 1.
    Ameur, Y.: A density theorem for weighted Fekete sets. Int. Math. Res. Not. 16, 5010–5046 (2017)Google Scholar
  2. 2.
    Ameur, Y., Hedenmalm, H., Makarov, N.: Ward identities and random normal matrices. Ann. Probab. 43 (2015), 1157–1201. Cf. arXiv:1109.5941v3 for a different version
  3. 3.
    Ameur, Y., Kang, N.-G., Makarov, N.: Rescaling Ward Identities in the Random Normal Matrix Model. arXiv:1410.4132v4
  4. 4.
    Ameur, Y., Kang, N.-G., Makarov, N., Wennman, A.: Scaling Limits of Random Normal Matrix Processes at Singular Boundary Points, arXiv:1510.08723
  5. 5.
    Ameur Y., Ortega-Cerdà J.: Beurling–Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal. 263, 1825–1861 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ameur, Y., Seo, S.-M.: Microscopic densities and Fock-Sobolev spaces. J. d’Analyse Mathématique (to appear). See also arXiv:1610.10052v3
  7. 7.
    Ameur, Y., Seo, S.-M.: On bulk singularities in the random normal matrix model. Constr. Approx. (to appear). https://doi.org/10.1007/s00365-017-9368-4
  8. 8.
    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The Two-Dimensional Coulomb Plasma: Quasi-free Approximation and Central Limit Theorem, arXiv:1609.08582
  9. 9.
    Bourgade P., Erdős L., Yau H.-T.: Universality of general \({\beta}\)-ensembles. Duke Math. J. 163, 1127–1190 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  11. 11.
    Caillol, J.M., Levesque, D, Weiss, J.J., Hansen, J.P.: A Monte-Carlo study of the classical two-dimensional one-component plasma. J. Stat. Phys. 28, 325–349 (1982)Google Scholar
  12. 12.
    Can T., Forrester P.J., Téllez G., Wiegmann P.: Singular behavior at the edge of Laughlin states. Phys. Rev. B 89, 235137 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Can T., Laskin M., Wiegmann P.: Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response. Phys. Rev. Lett. 113, 046803 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Carroll, T., Marzo, J., Massaneda, X., Ortega-Cerdà, J.: Equidistribution and \({\beta}\) ensembles. Annales de la Faculté des Sciences de Toulouse (Mathématiques), arXiv:1509.06725
  15. 15.
    Ferrari, F., Klevtsov, S.: FQHE on curved backgrounds, free fields and large \({N}\). JHEP12 (2014) 086Google Scholar
  16. 16.
    Forrester P.J.: Analogies between random matrix ensembles and the one-component plasma in two dimensions. Nucl. Phys. B 904, 253–281 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Forrester P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  18. 18.
    Hedenmalm H., Makarov N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106, 859–907 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jancovici B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Jansen S., Lieb E.H., Seiler R.: Symmetry breaking in Laughlin’s state on a cylinder. Commun. Math. Phys. 285, 503–535 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Johansson K.: On fluctuations of eigenvalues of random normal matrices. Duke Math. J. 91, 151–204 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kang, N.-G., Makarov, N.: Gaussian free field and conformal field theory. Astérisque 353, vii+136 (2013)Google Scholar
  23. 23.
    Laskin M., Chiu Y.H., Can T., Wiegmann P.: Emergent conformal symmetry of quantum Hall states on singular surfaces. Phys. Rev. Lett. 117, 266803 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Nodari, S.R., Serfaty, S.: Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not. 11, 3035–3093 (2015)Google Scholar
  25. 25.
    Rougerie N., Yngvason J.: Incompressibility estimates for the Laughlin phase, part II. Comm. Math. Phys. 339, 263–277 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Saff E.B., Totik V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Seo, S.-M.: Edge Scaling Limit of the Spectral Radius for Random Normal Matrix Ensembles at Hard Edge, arXiv:1508.06591

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceLund UniversityLundSweden

Personalised recommendations