Skip to main content
Log in

\({\Gamma}\)-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose and analyze a generalized two dimensional XY model, whose interaction potential has n weighted wells, describing corresponding symmetries of the system. As the lattice spacing vanishes, we derive by \({\Gamma}\)-convergence the discrete-to-continuum limit of this model. In the energy regime we deal with, the asymptotic ground states exhibit fractional vortices, connected by string defects. The \({\Gamma}\)-limit takes into account both contributions, through a renormalized energy, depending on the configuration of fractional vortices, and a surface energy, proportional to the length of the strings. Our model describes in a simple way several topological singularities arising in Physics and Materials Science. Among them, disclinations and string defects in liquid crystals, fractional vortices and domain walls in micromagnetics, partial dislocations and stacking faults in crystal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alberti G., Baldo S., Orlandi G.: Variational convergence of functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alicandro R., Cicalese M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. 192(3), 501–536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alicandro R., Cicalese M., Ponsiglione M.: Variational equivalence between Ginzburg–Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J. 60(1), 171–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Metastability and dynamics of discrete topological singularities in two dimensions: a \({\Gamma}\)-convergence approach. Arch. Ration. Mech. Anal. 214(1), 269–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Dynamics of discrete screw dislocations along glide directions. J. Mech. Phys. Solids 92, 87–104 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Alicandro R., Ponsiglione M.: Ginzburg–Landau functionals and renormalized energy: a revised \({\Gamma}\)-convergence approach. J. Funct. Anal. 266(8), 4890–4907 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111(4), 291–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrosio L., Braides A.: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  11. Ball J.M., Bedford S.: Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612(1), 1–23 (2015)

    Article  Google Scholar 

  12. Ball J.M., Zarnescu A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bedford S.: Function spaces for liquid crystals. Arch. Ration. Mech. Anal. 219(2), 937–984 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bethuel, F., Brezis, H., Hèlein, F.: Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser Boston, Boston (1994)

  15. Bonnes L., Wessel S.: Half-vortex unbinding and Ising transition in constrained superfluids. Phys. Rev. B 85(9), 094513 (2012)

    Article  ADS  Google Scholar 

  16. Braides A., Cicalese M.: Interfaces, modulated phases and textures in lattice systems. Arch. Ration. Mech. Anal. 223(2), 977–1017 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Braides A., Cicalese M., Solombrino F.: Q-tensor continuum energies as limits of head-to-tail symmetric spin systems. SIAM J. Math. Anal. 47(4), 2832–2867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Braides A., Conti S., Garroni A.: Density of polyhedral partitions. Calc. Var. PDE 56, 28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezis, H.: Degree theory: old and new. Topological nonlinear analysis, II (Frascati, 1995). In Matzeu, M., Vignoli, A. (eds.) Progress in Nonlinear Differential Equations and Their Applications, vol. 27, pp. 87–108. Birkhäuser Boston, Boston (1997)

  20. Brezis H., Nirenberg L.: Degree theory and BMO: Part I: compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995)

    Article  MATH  Google Scholar 

  21. Caffarelli L.A., de la Llave R.: Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118, 687–719 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Carpenter D.B., Chalker J.T.: The phase diagram of a generalised XY model. J. Phys. Condens. Matter. 1, 4907–4912 (1989)

    Article  ADS  Google Scholar 

  23. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  24. De Luca L.: \({\Gamma}\)-convergence analysis for discrete topological singularities: the anisotropic triangular lattice and the long range interaction energy. Asymptot. Anal. 96(3–4), 185–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dávila J., Ignat R.: Lifting of BV functions with values in S 1. C. R. Math. Acad. Sci. Paris 337(3), 159–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Federer, H.: Geometric Measure Theory, GrundlehrenMath. Wiss. 153, Springer, New York (1969)

  27. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)

  28. Goldman, M., Merlet, B., Millot, V.: A Ginzburg–Landau model with topologically induced free discontinuities (forthcoming paper)

  29. Hull D., Bacon D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  30. Jerrard R.J., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. 14(2), 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Korshunov S.E.: Phase diagram of the modified XY model. J. Phys. C Solid State Phys. 19(23), 4427–4441 (1986)

    Article  ADS  Google Scholar 

  32. Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  33. Lebwohl P.A., Lasher G.: Nematic-liquid-crystal order—a Monte Carlo calculation. Phys. Rev. A 6(1), 426–429 (1972)

    Article  ADS  Google Scholar 

  34. Lee D.H., Grinstein G.: Strings in two-dimensional classical XY models. Phys. Rev. Lett. 55(5), 541–544 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lin F.H.: Some dynamical properties of Ginzburg–Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Longa L., Trebin H.-R.: Structure of the elastic free chiral nematic liquid crystals. Phys. Rev. A 39(4), 2160–2168 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pang J., Muzny C.D., Clark N.A.: String defects in freely suspended liquid-crystal films. Phys. Rev. Lett. 69(19), 2783–2787 (1992)

    Article  ADS  Google Scholar 

  38. Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser Boston, Boston (2007)

  40. Sandier E., Serfaty S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schön R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tchernyshyov O., Chern G.-W.: Fractional vortices and composite domain walls in flat nanomagnets. Phys. Rev. Lett. 95(19), 197204 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia De Luca.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badal, R., Cicalese, M., De Luca, L. et al. \({\Gamma}\)-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects. Commun. Math. Phys. 358, 705–739 (2018). https://doi.org/10.1007/s00220-017-3026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3026-3

Navigation