Skip to main content
Log in

Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Nuwairan, M.: Potential examples for non-additivity of the minimal output entropy. Preprint, arXiv:1312.2200 (2013)

  2. Al Nuwairan M.: The extreme points of SU(2)-irreducibly covariant channels. Int. J. Math. 25(6), 1450048, 30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubrun G., Szarek S., Werner E.: Hastings’s additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305(1), 85–97 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aubrun G., Szarek S.J., Ye D.: Entanglement thresholds for random induced states. Commun. Pure Appl. Math. 67(1), 129–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banica T.: Théorie des représentations du groupe quantique compact libre \({{\rm O}(n)}\). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Brannan, M., Collins, B.: Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones. Preprint, arXiv:1608.03885 (2016)

  7. Belinschi S., Collins B., Nechita I.: Eigenvectors and eigenvalues in a random subspace of a tensor product. Invent. Math. 190(3), 647–697 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bichon J., De Rijdt A., Vaes S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brannan, M.: Approximation properties for locally compact quantum groups. Preprint, arXiv:1605.01770, to appear in the volume Topological Quantum Groups. Banach Center Publications, Warszawa (2016)

  10. Choi M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel I.B., Khovanov M.G.: Canonical bases in tensor products and graphical calculus for \({U_q(sl_2)}\). Duke Math. J. 87(3), 409–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukuda M., King C.: Entanglement of random subspaces via the Hastings bound. J. Math. Phys. 51(4), 042201, 19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grudka, A., Horodecki, M., Pankowski, L.: Constructive counterexamples to additivity of minimum output Rényi entropy of quantum channels for all \({p > 2}\). J. Phys. A Math. Theor. 43 (2010)

  14. Haagerup, U.: An example of a nonnuclear \({C^{\ast}}\)-algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79)

  15. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009)

    Article  Google Scholar 

  16. Hou, J., Li, C.-K., Poon, X., Qi, Y.-T., Sze, N.-S.: Criteria and new classes of k-positive maps. Preprint, arXiv:1211.0386 (2012)

  17. Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicity conjecture for all \({p > 1}\). Commun. Math. Phys. 284(1), 263–280 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kauffman L.H., Lins S.L.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  21. Morrison, S.: A formula for the jones-wenzl projections. In: Morrison, S., Dennys, D. (eds.) Proceedings of the 2014 Mavi and 2015 Qinhuangduo Conferences in honor of Vavghan F.R. Jones’ 60th birthday. Proc. Centre. Math. Appl., vol. 46, pp. 367–368 (2017)

  22. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Timmermann, T.: An invitation to quantum groups and duality. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyond

  24. Temperley H.N.V., Lieb E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A 322(1549), 251–280 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Vergnioux R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vergnioux R.: The property of rapid decay for discrete quantum groups. J. Oper. Theory 57(2), 303–324 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Vaes S., Vergnioux R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wenzl H.: On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada 9(1), 5–9 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Collins.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brannan, M., Collins, B. Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups. Commun. Math. Phys. 358, 1007–1025 (2018). https://doi.org/10.1007/s00220-017-3023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3023-6

Navigation