Communications in Mathematical Physics

, Volume 359, Issue 1, pp 101–119 | Cite as

2 Bounded Variation and Absolutely Continuous Spectrum of Jacobi Matrices

  • Yoram Last
  • Milivoje Lukic


We disprove a conjecture of Breuer–Last–Simon (Breuer et al. in Constr Approx 32(2):221–254, 2010) concerning the absolutely continuous spectrum of Jacobi matrices with coefficients that obey an ℓ2 bounded variation condition with step q. We prove existence of a.c. spectrum on a smaller set than that specified by the conjecture and prove that our result is optimal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breuer J., Last Y., Simon B.: The Nevai condition. Constr. Approx. 32(2), 221–254 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Breuer, J., Simon, B., Zeitouni, O.: Large deviations and sum rules for spectral theory: a pedagogical approach, J. Spectr. Theory, to appear. arXiv:1608.01467
  3. 3.
    Damanik D., Killip R., Simon B.: Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. Math. (2) 171(3), 1931–2010 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deift P., Killip R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203(2), 341–347 (1999)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Denisov S.: On the existence of the absolutely continuous component for the measure associated with some orthogonal systems. Commun. Math. Phys. 226(1), 205–220 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Denisov S.: On a conjecture by Y. Last. J. Approx. Theory 158(2), 194–213 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gamboa F., Nagel J., Rouault A.: Sum rules via large deviations. J. Funct. Anal. 270, 509–559 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gamboa, F., Nagel, J., Rouault, A.: Sum rules and large deviations for spectral measures on the unit circle, preprint. arXiv:1601.08135
  9. 9.
    Gesztesy F., Makarov K., Zinchenko M.: Essential closures and AC spectra for reflectionless CMV, Jacobi, and Schrödinger operators revisited. Acta Appl. Math 103(3), 315–339 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Golinskii L., Zlatoš A.: Coefficients of orthogonal polynomials on the unit circle and higher-order Szegő theorems. Constr. Approx. 26(3), 361–382 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaluzhny U., Shamis M.: Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square-summable variation. Constr. Approx. 35(1), 89–105 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Killip R., Simon B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. (2) 158(1), 253–321 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kupin S.: On a spectral property of Jacobi matrices. Proc. Am. Math. Soc. 132(5), 1377–1383 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kupin S.: Spectral properties of Jacobi matrices and sum rules of special form. J. Funct. Anal. 227(1), 1–29 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laptev A., Naboko S., Safronov O.: On new relations between spectral properties of Jacobi matrices and their coefficients. Commun. Math. Phys. 241(1), 91–110 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Last Y.: Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation. Commun. Math. Phys. 274(1), 243–252 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Last Y., Simon B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135(2), 329–367 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Last Y., Simon B.: The essential spectrum of Schrödinger, Jacobi, and CMV operators. J. Anal. Math. 98, 183–220 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lukic M.: On a conjecture for higher-order Szegő theorems. Constr. Approx. 38, 161–169 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lukic M.: Square-summable variation and absolutely continuous spectrum. J. Spectr. Theory 4(4), 815–840 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lukic M.: On higher-order Szegő theorems with a single critical point of arbitrary order. Constr. Approx. 44, 283–296 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Molchanov S., Novitskii M., Vainberg B.: First KdV integrals and absolutely continuous spectrum for 1-D Schrödinger operator. Commun. Math. Phys. 216(1), 195–213 (2001)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Nazarov F, Peherstorfer F, Volberg A, Yuditskii P: On generalized sum rules for Jacobi matrices. Int. Math. Res. Not. 2005(3), 155–186 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Simon, B.: Szegő’s theorem and its descendants. Spectral theory for L 2 perturbations of orthogonal polynomials, M. B. Porter Lectures, (Princeton University Press, Princeton, NJ, 2011)Google Scholar
  25. 25.
    Simon, B.: Trace Ideals and Their Applications, 2nd edn. Mathematical Surveys and Monographs, vol 120 (American Mathematical Society, Providence, RI, 2005), viii+150Google Scholar
  26. 26.
    Simon B., Zlatoš A.: Higher-order Szegő theorems with two singular points. J. Approx. Theory 134(1), 114–129 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stolz G.: Spectral theory for slowly oscillating potentials. I. Jacobi matrices. Manuscr. Math. 84(3–4), 245–260 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Verblunsky S.: On positive harmonic functions: a contribution to the algebra of Fourier series. Proc. Lond. Math. Soc. S2–38(1), 125–157 (1935)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of MathematicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations