Skip to main content
Log in

A Proof of Friedman’s Ergosphere Instability for Scalar Waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({(\mathcal{M}^{3+1},g)}\) be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion \({\mathscr{E}}\) and no future event horizon \({\mathcal{H}^{+}}\). In Friedman (Commun Math Phys 63(3):243–255, 1978), Friedman observed that, on such spacetimes, there exist solutions \({\varphi}\) to the wave equation \({\square_{g}\varphi=0}\) such that their local energy does not decay to 0 as time increases. In addition, Friedman provided a heuristic argument that the energy of such solutions actually grows to \({+\infty}\). In this paper, we provide a rigorous proof of Friedman’s instability. Our setting is, in fact, more general. We consider smooth spacetimes \({(\mathcal{M}^{d+1},g)}\), for any \({d\ge2}\), not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary \({\partial\mathscr{E}}\) of \({\mathscr{E}}\) on a small neighborhood of a point \({p\in\partial\mathscr{E}}\). This condition always holds if \({(\mathcal{M},g)}\) is analytic in that neighborhood of p, but it can also be inferred in the case when \({(\mathcal{M},g)}\) possesses a second Killing field \({\Phi}\) such that the span of \({\Phi}\) and the stationary Killing field T is timelike on \({\partial\mathscr{E}}\). We also allow the spacetimes \({(\mathcal{M},g)}\) under consideration to possess a (possibly empty) future event horizon \({\mathcal{H}^{+}}\), such that, however, \({\mathcal{H}^{+}\cap\,\,\mathscr{E}=\emptyset}\) (excluding, thus, the Kerr exterior family). As an application of our theorem, we infer an instability result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014). Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on the vector field method, of a Carleman-type estimate on the exterior of the ergoregion for a general class of stationary and asymptotically flat spacetimes. Applications of this estimate include a Morawetz-type bound for solutions \({\varphi}\) of \({\square_{g}\varphi=0}\) with frequency support bounded away from \({{\omega}=0}\) and \({{\omega}=\pm\infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S., Baouendi M.: A non uniqueness result for operators of principal type. Math. Z. 220(1), 561–568 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson L., Blue P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182(3), 787–853 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blue P., Soffer A.: Semilinear wave equations on the Schwarzschild manifold I: local decay estimates. Adv. Differ. Equ. 8(3), 595–614 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Butterworth E., Ipser J.: On the structure and stability of rapidly rotating fluid bodies in general relativity. I-The numerical method for computing structure and its application to uniformly rotating homogeneous bodies. Astrophys. J. 204, 200–223 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cardoso V., Pani P., Cadoni M., Cavaglia M.: Ergoregion instability of ultracompact astrophysical objects. Phys. Rev. D 77(12), 124044 (2008)

    Article  ADS  Google Scholar 

  7. Chandrasekhar S.: Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24(11), 611–615 (1970)

    Article  ADS  Google Scholar 

  8. Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space, volume 1 of Princeton Mathematical Series. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  9. Comins, N., Schutz, B.: On the ergoregion instability. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 364, pp. 211–226. The Royal Society (1978)

  10. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations (2016). arXiv preprint arXiv:1601.06467

  11. Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162(2), 381–457 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Dafermos, M., Rodnianski, I.: A note on energy currents and decay for the wave equation on a Schwarzschild background (2007). arXiv preprint arXiv:0710.0171

  13. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: the cases |a|<<M or axisymmetry (2010). arXiv preprint arXiv:1010.5132

  15. Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Evolution Equations, Clay Mathematics Proceedings, vol. 17, pp. 97–205 (2013)

  17. Dafermos M., Rodnianski I., Shlapentokh-Rothman Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case |a| < M. Ann. Math. 183(3), 787–913 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. Datchev K.: Quantitative limiting absorption principle in the semiclassical limit. Geom. Funct. Anal. 24(3), 740–747 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eskin G.: Superradiance initiated inside the ergoregion. Rev. Math. Phys. 28(10), 1650025 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Friedman J.L.: Ergosphere instability. Commun. Math. Phys. 63(3), 243–255 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Friedman J.L., Lockitch K.: Gravitational-wave driven instability of rotating relativistic stars. Prog. Theor. Phys. Suppl. 136, 121–134 (1999)

    Article  ADS  MATH  Google Scholar 

  22. Friedman J.L., Schutz B.: Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281–296 (1978)

    Article  ADS  Google Scholar 

  23. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Holmgren E.: Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl, Vetenskaps-Academien Förhandlinger 58, 91–103 (1901)

  25. Kay B.S., Wald R.M.: Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4(4), 893 (1987)

    Article  ADS  MATH  Google Scholar 

  26. Kokkotas K., Ruoff J., Andersson N.: w-mode instability of ultracompact relativistic stars. Phys. Rev. D 70(4), 043003 (2004)

    Article  ADS  Google Scholar 

  27. Kokkotas K., Schutz B.: Normal modes of a model radiating system. Gen. Relativ. Gravit. 18(9), 913–921 (1986)

    Article  ADS  MATH  Google Scholar 

  28. Lee John M.: Introduction to Smooth Manifolds. Springer, New York (2012)

    Book  Google Scholar 

  29. Metcalfe, J., Sterbenz, J., Tataru, D.: Local energy decay for scalar fields on time dependent non-trapping backgrounds (2017). arXiv preprint arXiv:1703.08064

  30. Moschidis G.: Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes. Ann. PDE 2, 5 (2016). doi:10.1007/s40818-016-0010-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Moschidis G.: The r p-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2, 6 (2016). doi:10.1007/s40818-016-0011-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Moschidis, G.: Superradiant instabilities for short-range non-negative potentials on kerr spacetimes and applications (2016). arXiv preprint arXiv:1608.02041

  33. Oliveira L., Cardoso V., Crispino L.: Ergoregion instability: the hydrodynamic vortex. Phys. Rev. D 89(12), 124008 (2014)

    Article  ADS  Google Scholar 

  34. Rodnianski I., Tao T.: Effective limiting absorption principles, and applications. Commun. Math. Phys. 333, 1–95 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Shlapentokh-Rothman Y.: Exponentially growing finite energy solutions for the Klein–Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329(3), 859–891 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Annales Henri Poincaré 16(1), 289–345 (2015)

  37. Tataru D.: Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Commun. Partial Differ. Equ. 20(5-6), 855–884 (1995)

    MATH  Google Scholar 

  38. Tataru D., Tohaneanu M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011(2), 248–292 (2011)

    MATH  MathSciNet  Google Scholar 

  39. Yoshida S., Eriguchi Y.: Ergoregion instability revisited—a new and general method for numerical analysis of stability. Mon. Not. R. Astron. Soc. 282(2), 580–586 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Moschidis.

Additional information

Communicated by P. T. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschidis, G. A Proof of Friedman’s Ergosphere Instability for Scalar Waves. Commun. Math. Phys. 358, 437–520 (2018). https://doi.org/10.1007/s00220-017-3010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3010-y

Navigation