Skip to main content
Log in

Global Normal Form and Asymptotic Spectral Gap for Open Partially Expanding Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a \({\mathbb{R}}\)-extension of one dimensional uniformly expanding open dynamical systems and prove a new explicit estimate for the asymptotic spectral gap. To get these results, we use a new application of a “global normal form” for the dynamical system, a “semiclassical expression beyond the Ehrenfest time” that expresses the transfer operator at large time as a sum over rank one operators (each is associated to one orbit). In this paper we establish the validity of the so-called “diagonal approximationup to twice the local Ehrenfest time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math. (2) 86, 374–407 (1967)

  2. Arnoldi, J.F., Faure, F., Weich, T.: Asymptotic spectral gap and weyl law for Ruelle resonances of open partially expanding maps. Ergod. Theory Dyn. Syst. 1–58 (2013). arXiv:1302.3087

  3. Arnold, V.I.: Les méthodes mathématiques de la mécanique classique. Ed. Mir. Moscou (1976)

  4. Arnold V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin (1988)

    Book  Google Scholar 

  5. Bonechi F., DeBièvre S.: Exponential mixing and ln(h) timescales in quantized hyperbolic maps on the torus. Commun. Math. Phys. 211, 659–686 (2000)

    Article  ADS  Google Scholar 

  6. Bourgain, J., Dyatlov, S.: Spectral gaps without the pressure condition (2016). arXiv preprint arXiv:1612.09040

  7. Barkhofen, S., Faure, F., Weich, T.: Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum. Nonlinearity 27, 18299 (2014). arXiv preprint arXiv:1403.7771

  8. Butterley O., Liverani C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1(2), 301–322 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Borthwick D.: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhauser, Basel (2007)

    MATH  Google Scholar 

  10. Borthwick D.: Distribution of resonances for hyperbolic surfaces. Exp. Math. 23, 25–45 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brin M., Stuck G.: Introduction to Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  12. Bates S., Weinstein A.: Lectures on the Geometry of Quantization, vol. 8. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  13. Borthwick, D., Weich, T.: Symmetry reduction of holomorphic iterated function schemes and factorization of selberg zeta functions. J. Spectr. Theory 6(2), 267–329 (2016). arXiv preprint arXiv:1407.6134

  14. Barkhofen S., Weich T., Potzuweit A., Stöckmann H.-J., Kuhl U., Zworski M.: Experimental observation of the spectral gap in microwave n-disk systems. Phys. Rev. Lett. 110(16), 164102 (2013)

    Article  ADS  Google Scholar 

  15. DeLatte D.: Nonstationnary normal forms and cocycle invariants. Random Comput. Dyn. 1, 229–259 (1992)

    MATH  MathSciNet  Google Scholar 

  16. DeLatte D.: On normal forms in hamiltonian dynamics, a new approach to some convergence questions. Ergod. Theory Dyn. Syst. 15, 49–66 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dolgopyat D.: On decay of correlations in Anosov flows. Ann. Math. (2) 147(2), 357–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dolgopyat D.: On mixing properties of compact group extensions of hyperbolic systems. Israel J. Math. 130, 157–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dolgopyat D., Pollicott M.: Addendum to ’periodic orbits and dynamical spectra’. Ergod. Theory Dyn. Syst. 18(2), 293–301 (1998)

    Article  MATH  Google Scholar 

  20. Dyatlov, S., Zahl, J.: Spectral gaps, additive energy, and a fractal uncertainty principle. Geom. Funct. Anal. 26:1011 (2016). arXiv:1504.06589

  21. Engel K.J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations, vol. 194. Springer, Berlin (1999)

    Google Scholar 

  22. Falconer K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  23. Faure, F.: Multimedia results for expanding maps. http://www-fourier.ujf-grenoble.fr/~faure/articles

  24. Faure F.: Semiclassical formula beyond the Ehrenfest time in quantum chaos.(i) trace formula. Annales de l’Institut Fourier. No. 7 57, 2525–2599 (2007)

    Article  MATH  Google Scholar 

  25. Faure F., Nonnenmacher S., DeBièvre S.: Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239, 449–492 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Faure F., Sjöstrand J.: Upper bound on the density of Ruelle resonances for Anosov flows. A semiclassical approach. Commun. Math. Phys. Issue 2. 308, 325–364 (2011).

    Article  MATH  Google Scholar 

  27. Faure F., Tsujii M.: Band structure of the Ruelle spectrum of contact Anosov flows. Comptes rendus Mathématique 351, 385–391 (2013). arXiv:1003.0513

    Article  MATH  MathSciNet  Google Scholar 

  28. Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anosov diffeomorphism. Asterisque, vol. 375, pp. ix+222 (2015). arXiv:1206.0282

  29. Faure, F., Tsujii, M.: The semiclassical zeta function for geodesic flows on negatively curved manifolds. Inventiones mathematicae (2016). arXiv:1311.4932

  30. Faure, F., Tsujii, M.: Fractal Weyl law for the ruelle spectrum of Anosov flows (2017). arXiv:1706.09307

  31. Guillarmou, C., Hilgert, J., Weich, T.: Classical and quantum resonances for hyperbolic surfaces. Math. Ann. (2016). doi:10.1007/s00208-017-1576-5. arXiv preprint arXiv:1605.08801

  32. Guillope L., Lin K., Zworski M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004). arXiv:1301.5525

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Guillemin V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44(3), 485–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hasselblatt B.: Hyperbolic dynamical systems. Handb. Dyn. Syst. 1, 239–319 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hensley D.: Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. J. Number Theory 40(3), 336–358 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hirsch, M.W., Pugh, C.C.: Stable manifolds and hyperbolic sets. In: Global Analysis (Proceedings of Symposia in Pure Mathematics, Vol. XIV, Berkeley, CA, 1968), pp. 133–163 (1970)

  37. Jakobson D., Naud F.: On the critical line of convex co-compact hyperbolic surfaces. Geom. Funct. Anal. 22(2), 352–368 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jenkinson O., Pollicott M.: Calculating Hausdorff dimension of Julia sets and Kleinian limit sets. Am. J. Math. 124(3), 495–545 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  40. Kifer Y.: Averaging in dynamical systems and large deviations. Invent. Math. 110(1), 337–370 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Kifer Y.: Large deviations, averaging and periodic orbits of dynamical systems. Commun. Math. Phys. 162(1), 33–46 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Lebeau, G.: Equation des ondes amorties. In: de Monvel, A.B., Marchenko, V. (eds.) Algebraic and Geometric Methods in Mathematical Physics. Mathematical Physics Studies, vol. 19, pp. 73–109. Springer, Dordrecht (1996)

  43. Liverani C.: On contact Anosov flows. Ann. Math. 159(3), 1275–1312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lu W., Sridhar S., Zworski M.: Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91(15), 154101 (2003)

    Article  ADS  Google Scholar 

  45. Mauldin R., Urbański M.: Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Am. Math. Soc. 351(12), 4995–5025 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. In: Annales Scientifiques de Ecole Normale Superieure, vol. 38, pp. 116–153. Elsevier (2005)

  47. Nelson E.: Topics in Dynamics, vol. 969. Princeton University Press, Princeton (1969)

    Google Scholar 

  48. Nonnenmacher S., Zworski M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200(2), 345–438 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Pesin, Y.: Lectures on Partial Hyperbolicity and Stable Ergodicity. European Mathematical Society (2004)

  50. Pollicott M.: Large deviations, Gibbs measures and closed orbits for hyperbolic flows. Math. Z. 220(2), 219–230 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  51. Pollicott M., Sharp R.: Large deviations and the distribution of pre-images of rational maps. Commun. Math. Phys. 181(3), 733–739 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Ruelle D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125(2), 239–262 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Sharp R.: Prime orbit theorems with multi-dimensional constraints for Axiom A flows. Monatsh. Math. 114(3-4), 261–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sjöstrand J.: Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Math. Sci. 36(5), 573–611 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Taylor M.: Pseudo Differential Operators. Lecture Notes in Mathematics Vol. 416. Springer, Berlin (1974)

    Book  Google Scholar 

  56. Taylor M.: Partial Differential Equations vol. I. Springer, Berlin (1996)

    Book  Google Scholar 

  57. Tsujii M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23(7), 1495–1545 (2010). arXiv:0806.0732v2 [math.DS]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Tsujii M.: Contact Anosov flows and the fourier–bros–iagolnitzer transform. Ergod. Theory Dyn. Syst. 32(06), 2083–2118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  59. Tsujii, M.: The error term of the prime orbit theorem for expanding semiflows. Ergod. Theory Dyn. Syst. (2017). doi:10.1017/etds.2016.113. arXiv:1502.00422

  60. Tsujii, M.: Exponential mixing for generic volume-preserving Anosov flows in dimension three (2016). arXiv preprint arXiv:1601.00063

  61. Weich T.: Resonance chains and geometric limits on Schottky surfaces. Commun. Math. Phys. 337(2), 727–765 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Young L.-S.: Large deviations in dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)

    MATH  MathSciNet  Google Scholar 

  63. Zworski M.: Semiclassical Analysis. Graduate Studies in Mathematics Series. Amer Mathematical Society, Providence (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Faure.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faure, F., Weich, T. Global Normal Form and Asymptotic Spectral Gap for Open Partially Expanding Maps. Commun. Math. Phys. 356, 755–822 (2017). https://doi.org/10.1007/s00220-017-3000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3000-0

Navigation