Skip to main content
Log in

Time-Periodic Einstein–Klein–Gordon Bifurcations of Kerr

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct one-parameter families of solutions to the Einstein–Klein–Gordon equations bifurcating off the Kerr solution such that the underlying family of spacetimes are each an asymptotically flat, stationary, axisymmetric, black hole spacetime, and such that the corresponding scalar fields are non-zero and time-periodic. An immediate corollary is that for these Klein–Gordon masses, the Kerr family is not asymptotically stable as a solution to the Einstein–Klein–Gordon equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, S.: Bounds on exponential decay of eigenfunctions of Schrödinger operators. In: Graffi, S. (ed) Schrödinger Operators. Lecture Notes in Mathematics, vol. 1159, 1–38. Springer, Berlin, Heidelberg (1985)

  2. Alexakis S., Ionescu A., Klainerman S.: Hawking’s local rigidity theorem without analyticity. Geome. Funct. Anal. 20(4), 845–869 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexakis S., Ionescu A., Klainerman S.: Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces. Commun. Math. Phys. 299(1), 89–127 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Alexakis, S., Schule V.: Non-existence of time-periodic vacuum spacetimes. J. Differ. Geom. (to appear). arXiv:1504.04592 (2015)

  5. Alexakis S., Schlue V., Shao A.: Unique continuation from infinity for linear waves. Adv. Math. 286, 481–544 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andersson L., Blue P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. (2) 182(3), 787–853 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aretakis S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263(9), 2770–2831 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aretakis S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19(3), 507–530 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bartnik R., McKinnon J.: Particlelike solutions of the Einstein–Yang–Mills equations. Phys. Rev. Lett. 61(2), 141 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  11. Benone, C., Crispino, L., Herdeiro, C., Radu, E.: Kerr–Newman scalar clouds. Phys. Rev. D 90, 104024–104034 (2014)

  12. Bizoń P., Wasserman A.: On existence of mini-boson stars. Commun. Math Phys. 215(2), 357–373 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Brihaye Y., Herdeiro C., Radu E.: On existence of mini-boson stars. Phys. Lett. B 739, 1–7 (2000)

    Article  ADS  Google Scholar 

  14. Brito, R., Cardoso, V., Pani, P.: Superradiance. Lecture Notes in Physics, vol. 906, no. 1. Springer (2015). doi:10.1007/978-3-319-19000-6

  15. Bunting, G.: Proof of the uniqueness conjecture for black holes. Ph.D. thesis, University of New England (1983)

  16. Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26(6), 331 (1971)

    Article  ADS  Google Scholar 

  17. Chodosh, O., Shlapentokh-Rothman, Y.: Stationary axisymmetric black holes with matter, preprint. arXiv:1510.08024 (2015)

  18. Christodoulou D., Klainerman S.: Asymptotic properties of linear field equations in Minkowski space. Commun. Pure Appl. Math. 43(2), 137–199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  20. Chruściel P., Costa J.: On uniqueness of stationary vacuum black holes. Astérisque 321, 195–265 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Chruściel, P., Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relat. 15(7) (2012)

  22. Costa, J.: On black hole uniqueness theorems. Ph.D. thesis, Oxford University (2010)

  23. Cunha P.V.P., Herdeiro C.A.R., Radu E., Rúnarsson H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115, 211102 (2015)

    Article  MATH  ADS  Google Scholar 

  24. Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes. J. Differ. Geom. (to appear). arXiv:1306.5364 (2013)

  25. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \({|a|\ll {M}}\) or axisymmetry, preprint. arXiv:1010.5132 (2010)

  26. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics, pp. 421–432. World Sci. Publ., Hackensack (2010)

  27. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T., et al. (ed.) Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, pp. 132–189. World Scientific, Singapore. arXiv:1010.5137 (2011)

  28. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: A scattering theory for the wave equation on Kerr black hole exteriors. Ann. Sci. éc. Norm. Supér. (to appear). arXiv:1412.8379 (2014)

  29. Dafermos M., Rodnianski I., Shlapentokh-Rothman Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \({|a| < M}\). Ann. Math. (2) 183(3), 787–913 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dain S.: Angular-momentum-mass inequality for axisymmetric black holes. Phys. Rev. Lett. 96, 101101 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Dain S.: Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Differ. Geom. 79, 33–67 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Damour T., Deruelle N., Ruffini R.: On quantum resonances in stationary geometries. Lett. Al Nuovo Cimento 15(8), 257–262 (1976)

    Article  ADS  Google Scholar 

  33. Detweiler S.: Klein–Gordon equation and rotating black holes. Phys. Rev. D 22(10), 2323–2326 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  34. Dyatlov S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023–1035 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. 306(1), 119–163 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Dyatlov S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335(3), 1445–1485 (2015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Eells J., Lemaire L.: Selected Topics in Harmonic Maps, vol. 50. American Mathematical Society, Providence (1983)

    Book  MATH  Google Scholar 

  38. Finster F., Kamran N., Smoller J., Yau S.-T.: A rigorous treatment of energy extraction from a rotating black hole. Commun. Math. Phys. 287(3), 829–847 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Friedberg R., Lee T.-D., Pang Y.: Mini-soliton stars. Phys. Rev. D 35, 3640–3657 (1987)

    Article  ADS  Google Scholar 

  40. Friedberg R., Lee T.-D., Pang Y.: Scalar soliton stars and black holes. Phys. Rev. D 35, 3658–3677 (1987)

    Article  ADS  Google Scholar 

  41. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  42. Halkin, H.: Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Control 12, 229–236 (1974). Collection of articles dedicated to the memory of Lucien W. Neustadt. MR 0406524 (53 #10311)

  43. Hawking S.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  44. Herdeiro, C., Radu, E.: Ergosurfaces for Kerr black holes with scalar hair. Phys. Rev. D 89, 124018–124024 (2014)

  45. Herdeiro C., Radu E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101–221105 (2014)

    Article  ADS  Google Scholar 

  46. Herdeiro, C. Radu, E., Rúnarsson, H.: Non-linear Q-clouds around Kerr black holes. Phys. Lett. B 739, 302–307 (2014)

  47. Holzegel G., Smulevici J.: Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66(11), 1751–1802 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Holzegel G., Smulevici J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057–1090 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ionescu, A.D., Klainerman, S.: On the global stability of the wave-map equation in Kerr spaces with small angular momentum. Ann. PDE 1(1), Art. 1, 78 (2015) MR 3479066

  50. Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  51. Israel W.: Event horizions in static electrovac space-times. Commun. Math. Phys. 8, 245–260 (1968)

    Article  ADS  Google Scholar 

  52. Kaup D.: Klein–Gordon Geons. Phys. Rev. 172, 1331–1342 (1968)

    Article  ADS  Google Scholar 

  53. Lee T.-D., Pang Y.: Stability of mini-boson stars. Nuclear Phys. B 315, 477–516 (1989)

    Article  ADS  Google Scholar 

  54. Liebling, S., Palenzuela, C.: Dynamical boson stars. Living Rev. Relativity 15 (2012)

  55. Mazur P.: Proof of uniqueness of the Kerr-Neuman black hole solution. J. Math. Phys. 15, 3173–3180 (1982)

    Article  MATH  Google Scholar 

  56. Mcleod J., Smoller J., Wasserman A., Yau S.-T.: Smooth static solutions of the Einstein/Yang-Mills equations. Commun. Math. Phys. 143(1), 115–147 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Press W., Teukolsky S.: Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)

    Article  ADS  Google Scholar 

  58. Robinson D.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  ADS  Google Scholar 

  59. Ruffini R., Bonazzola S.: Systems of self-gravitating particles in general relativity. Phys. Rev. 187, 1767–1783 (1969)

    Article  ADS  Google Scholar 

  60. Schoen R., Zhou X.: Convexity of reduced energy and mass angular momentum inequalities. Ann. Henri Poincaré 14(7), 1747–1773 (2013)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Schunk, F., Mielke, E.: Rotating boson starsIn: iRelativity and Scientific Computing: Computer Algebra, Numerics, Visualization, 152nd WE-Heraeus seminar on Relativity and Scientific computing, Bad Honnef, Germany, Septeber 18, vol. 22, pp. 138–151 (1995)

  62. Shlapentokh-Rothman Y.: Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329(3), 859–891 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Shlapentokh-Rothman Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Ann. Henri Poincaré 16(1), 289–345 (2015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. Smoller J., Wasserman A., Yau S.-T.: Existence of black hole solutions for the Einstein-Yang/Mills equations. Commun. Math. Phys. 154(2), 377–401 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2, 248–292 (2011)

  66. Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. Wald R.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  68. Weinstein G.: On rotating black holes in equilibrium in general relativity. Commun. Pure Appl. Math. 43(7), 903–948 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  69. Weinstein G.: The stationary axisymmetric two-body problem in general relativity. Commun. Pure Appl. Math. 45(9), 1183–1203 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  70. Wong W., Yu P.: Non-existence of multiple-black-hole solutions close to Kerr–Newman. Commun. Math. Phys. 325(3), 965–996 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. Zeldovich Y.: Generating of waves by a rotating body. ZhETF 14, 180–181 (1971)

    Google Scholar 

  72. Zourous T., Eardley D.: Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. 118(1), 139–155 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otis Chodosh.

Additional information

Communicated by P. T. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chodosh, O., Shlapentokh-Rothman, Y. Time-Periodic Einstein–Klein–Gordon Bifurcations of Kerr. Commun. Math. Phys. 356, 1155–1250 (2017). https://doi.org/10.1007/s00220-017-2998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2998-3

Navigation